Loading…
An Atomic-Array Optical Clock with Single-Atom Readout
Currently, the most accurate and stable clocks use optical interrogation of either a single ion or an ensemble of neutral atoms confined in an optical lattice. Here, we demonstrate a new optical clock system based on an array of individually trapped neutral atoms with single-atom readout, merging ma...
Saved in:
Published in: | Physical review. X 2019-12, Vol.9 (4), p.041052, Article 041052 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-a0f5b6335a22e50b0b164ee3a6c3448682627126ecc0d852aec3a3d097902ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-a0f5b6335a22e50b0b164ee3a6c3448682627126ecc0d852aec3a3d097902ca3 |
container_end_page | |
container_issue | 4 |
container_start_page | 041052 |
container_title | Physical review. X |
container_volume | 9 |
creator | Madjarov, Ivaylo S. Cooper, Alexandre Shaw, Adam L. Covey, Jacob P. Schkolnik, Vladimir Yoon, Tai Hyun Williams, Jason R. Endres, Manuel |
description | Currently, the most accurate and stable clocks use optical interrogation of either a single ion or an ensemble of neutral atoms confined in an optical lattice. Here, we demonstrate a new optical clock system based on an array of individually trapped neutral atoms with single-atom readout, merging many of the benefits of ion and lattice clocks as well as creating a bridge to recently developed techniques in quantum simulation and computing with neutral atoms. We evaluate single-site-resolved frequency shifts and short-term stability via self-comparison. Atom-by-atom feedback control enables direct experimental estimation of laser noise contributions. Results agree well with an ab initio Monte Carlo simulation that incorporates finite temperature, projective readout, laser noise, and feedback dynamics. Our approach, based on a tweezer array, also suppresses interaction shifts while retaining a short dead time, all in a comparatively simple experimental setup suited for transportable operation. These results establish the foundations for a third optical clock platform and provide a novel starting point for entanglement-enhanced metrology, quantum clock networks, and applications in quantum computing and communication with individual neutral atoms that require optical-clock-state control. |
doi_str_mv | 10.1103/PhysRevX.9.041052 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_32052e246eb64c85b7ee0b0d998336f9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_32052e246eb64c85b7ee0b0d998336f9</doaj_id><sourcerecordid>2550627467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-a0f5b6335a22e50b0b164ee3a6c3448682627126ecc0d852aec3a3d097902ca3</originalsourceid><addsrcrecordid>eNpNUEtLw0AQXkTBUvsDvAU8p84-kxxD8VEoVGoP3pbNZtKmpt26SZX--26NinOZYfj4XoTcUhhTCvz-ZX1sF_j5Ns7GIChIdkEGjCqIOYf08t99TUZtu4EwCqhIkgFR-S7KO7etbZx7b47RfN_V1jTRpHH2Pfqqu3X0Wu9WDcZnWLRAU7pDd0OuKtO0OPrZQ7J8fFhOnuPZ_Gk6yWexFRy62EAlC8W5NIyhhAIKqgQiN8pyIVKVMsUSyhRaC2UqmUHLDS8hSzJg1vAhmfa0pTMbvff11vijdqbW3w_nV9r44LdBzVnIjUwoLJSwqSwSxCBYZlnKuaqywHXXc-29-zhg2-mNO_hdcK-ZlBCMCJUEFO1R1ru29Vj9qVLQ57L1b9k6033Z_AQUS3CU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550627467</pqid></control><display><type>article</type><title>An Atomic-Array Optical Clock with Single-Atom Readout</title><source>Publicly Available Content Database</source><creator>Madjarov, Ivaylo S. ; Cooper, Alexandre ; Shaw, Adam L. ; Covey, Jacob P. ; Schkolnik, Vladimir ; Yoon, Tai Hyun ; Williams, Jason R. ; Endres, Manuel</creator><creatorcontrib>Madjarov, Ivaylo S. ; Cooper, Alexandre ; Shaw, Adam L. ; Covey, Jacob P. ; Schkolnik, Vladimir ; Yoon, Tai Hyun ; Williams, Jason R. ; Endres, Manuel</creatorcontrib><description>Currently, the most accurate and stable clocks use optical interrogation of either a single ion or an ensemble of neutral atoms confined in an optical lattice. Here, we demonstrate a new optical clock system based on an array of individually trapped neutral atoms with single-atom readout, merging many of the benefits of ion and lattice clocks as well as creating a bridge to recently developed techniques in quantum simulation and computing with neutral atoms. We evaluate single-site-resolved frequency shifts and short-term stability via self-comparison. Atom-by-atom feedback control enables direct experimental estimation of laser noise contributions. Results agree well with an ab initio Monte Carlo simulation that incorporates finite temperature, projective readout, laser noise, and feedback dynamics. Our approach, based on a tweezer array, also suppresses interaction shifts while retaining a short dead time, all in a comparatively simple experimental setup suited for transportable operation. These results establish the foundations for a third optical clock platform and provide a novel starting point for entanglement-enhanced metrology, quantum clock networks, and applications in quantum computing and communication with individual neutral atoms that require optical-clock-state control.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.9.041052</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Arrays ; Atomic properties ; Clock systems ; Clocks ; Clocks & watches ; Control stability ; Feedback control ; Geodesy ; Interrogation ; Metrology ; Monte Carlo simulation ; Neutral atoms ; Optical lattices ; Performance degradation ; Quantum computing ; Quantum entanglement ; Simulation ; Stability analysis ; Systematic errors</subject><ispartof>Physical review. X, 2019-12, Vol.9 (4), p.041052, Article 041052</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-a0f5b6335a22e50b0b164ee3a6c3448682627126ecc0d852aec3a3d097902ca3</citedby><cites>FETCH-LOGICAL-c430t-a0f5b6335a22e50b0b164ee3a6c3448682627126ecc0d852aec3a3d097902ca3</cites><orcidid>0000-0002-3798-4424 ; 0000-0002-8059-5950 ; 0000-0002-4461-224X ; 0000-0002-2902-5549 ; 0000-0002-2408-9295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550627467?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Madjarov, Ivaylo S.</creatorcontrib><creatorcontrib>Cooper, Alexandre</creatorcontrib><creatorcontrib>Shaw, Adam L.</creatorcontrib><creatorcontrib>Covey, Jacob P.</creatorcontrib><creatorcontrib>Schkolnik, Vladimir</creatorcontrib><creatorcontrib>Yoon, Tai Hyun</creatorcontrib><creatorcontrib>Williams, Jason R.</creatorcontrib><creatorcontrib>Endres, Manuel</creatorcontrib><title>An Atomic-Array Optical Clock with Single-Atom Readout</title><title>Physical review. X</title><description>Currently, the most accurate and stable clocks use optical interrogation of either a single ion or an ensemble of neutral atoms confined in an optical lattice. Here, we demonstrate a new optical clock system based on an array of individually trapped neutral atoms with single-atom readout, merging many of the benefits of ion and lattice clocks as well as creating a bridge to recently developed techniques in quantum simulation and computing with neutral atoms. We evaluate single-site-resolved frequency shifts and short-term stability via self-comparison. Atom-by-atom feedback control enables direct experimental estimation of laser noise contributions. Results agree well with an ab initio Monte Carlo simulation that incorporates finite temperature, projective readout, laser noise, and feedback dynamics. Our approach, based on a tweezer array, also suppresses interaction shifts while retaining a short dead time, all in a comparatively simple experimental setup suited for transportable operation. These results establish the foundations for a third optical clock platform and provide a novel starting point for entanglement-enhanced metrology, quantum clock networks, and applications in quantum computing and communication with individual neutral atoms that require optical-clock-state control.</description><subject>Arrays</subject><subject>Atomic properties</subject><subject>Clock systems</subject><subject>Clocks</subject><subject>Clocks & watches</subject><subject>Control stability</subject><subject>Feedback control</subject><subject>Geodesy</subject><subject>Interrogation</subject><subject>Metrology</subject><subject>Monte Carlo simulation</subject><subject>Neutral atoms</subject><subject>Optical lattices</subject><subject>Performance degradation</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Simulation</subject><subject>Stability analysis</subject><subject>Systematic errors</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUEtLw0AQXkTBUvsDvAU8p84-kxxD8VEoVGoP3pbNZtKmpt26SZX--26NinOZYfj4XoTcUhhTCvz-ZX1sF_j5Ns7GIChIdkEGjCqIOYf08t99TUZtu4EwCqhIkgFR-S7KO7etbZx7b47RfN_V1jTRpHH2Pfqqu3X0Wu9WDcZnWLRAU7pDd0OuKtO0OPrZQ7J8fFhOnuPZ_Gk6yWexFRy62EAlC8W5NIyhhAIKqgQiN8pyIVKVMsUSyhRaC2UqmUHLDS8hSzJg1vAhmfa0pTMbvff11vijdqbW3w_nV9r44LdBzVnIjUwoLJSwqSwSxCBYZlnKuaqywHXXc-29-zhg2-mNO_hdcK-ZlBCMCJUEFO1R1ru29Vj9qVLQ57L1b9k6033Z_AQUS3CU</recordid><startdate>20191211</startdate><enddate>20191211</enddate><creator>Madjarov, Ivaylo S.</creator><creator>Cooper, Alexandre</creator><creator>Shaw, Adam L.</creator><creator>Covey, Jacob P.</creator><creator>Schkolnik, Vladimir</creator><creator>Yoon, Tai Hyun</creator><creator>Williams, Jason R.</creator><creator>Endres, Manuel</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3798-4424</orcidid><orcidid>https://orcid.org/0000-0002-8059-5950</orcidid><orcidid>https://orcid.org/0000-0002-4461-224X</orcidid><orcidid>https://orcid.org/0000-0002-2902-5549</orcidid><orcidid>https://orcid.org/0000-0002-2408-9295</orcidid></search><sort><creationdate>20191211</creationdate><title>An Atomic-Array Optical Clock with Single-Atom Readout</title><author>Madjarov, Ivaylo S. ; Cooper, Alexandre ; Shaw, Adam L. ; Covey, Jacob P. ; Schkolnik, Vladimir ; Yoon, Tai Hyun ; Williams, Jason R. ; Endres, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-a0f5b6335a22e50b0b164ee3a6c3448682627126ecc0d852aec3a3d097902ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrays</topic><topic>Atomic properties</topic><topic>Clock systems</topic><topic>Clocks</topic><topic>Clocks & watches</topic><topic>Control stability</topic><topic>Feedback control</topic><topic>Geodesy</topic><topic>Interrogation</topic><topic>Metrology</topic><topic>Monte Carlo simulation</topic><topic>Neutral atoms</topic><topic>Optical lattices</topic><topic>Performance degradation</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Simulation</topic><topic>Stability analysis</topic><topic>Systematic errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madjarov, Ivaylo S.</creatorcontrib><creatorcontrib>Cooper, Alexandre</creatorcontrib><creatorcontrib>Shaw, Adam L.</creatorcontrib><creatorcontrib>Covey, Jacob P.</creatorcontrib><creatorcontrib>Schkolnik, Vladimir</creatorcontrib><creatorcontrib>Yoon, Tai Hyun</creatorcontrib><creatorcontrib>Williams, Jason R.</creatorcontrib><creatorcontrib>Endres, Manuel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madjarov, Ivaylo S.</au><au>Cooper, Alexandre</au><au>Shaw, Adam L.</au><au>Covey, Jacob P.</au><au>Schkolnik, Vladimir</au><au>Yoon, Tai Hyun</au><au>Williams, Jason R.</au><au>Endres, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Atomic-Array Optical Clock with Single-Atom Readout</atitle><jtitle>Physical review. X</jtitle><date>2019-12-11</date><risdate>2019</risdate><volume>9</volume><issue>4</issue><spage>041052</spage><pages>041052-</pages><artnum>041052</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Currently, the most accurate and stable clocks use optical interrogation of either a single ion or an ensemble of neutral atoms confined in an optical lattice. Here, we demonstrate a new optical clock system based on an array of individually trapped neutral atoms with single-atom readout, merging many of the benefits of ion and lattice clocks as well as creating a bridge to recently developed techniques in quantum simulation and computing with neutral atoms. We evaluate single-site-resolved frequency shifts and short-term stability via self-comparison. Atom-by-atom feedback control enables direct experimental estimation of laser noise contributions. Results agree well with an ab initio Monte Carlo simulation that incorporates finite temperature, projective readout, laser noise, and feedback dynamics. Our approach, based on a tweezer array, also suppresses interaction shifts while retaining a short dead time, all in a comparatively simple experimental setup suited for transportable operation. These results establish the foundations for a third optical clock platform and provide a novel starting point for entanglement-enhanced metrology, quantum clock networks, and applications in quantum computing and communication with individual neutral atoms that require optical-clock-state control.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.9.041052</doi><orcidid>https://orcid.org/0000-0002-3798-4424</orcidid><orcidid>https://orcid.org/0000-0002-8059-5950</orcidid><orcidid>https://orcid.org/0000-0002-4461-224X</orcidid><orcidid>https://orcid.org/0000-0002-2902-5549</orcidid><orcidid>https://orcid.org/0000-0002-2408-9295</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-3308 |
ispartof | Physical review. X, 2019-12, Vol.9 (4), p.041052, Article 041052 |
issn | 2160-3308 2160-3308 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_32052e246eb64c85b7ee0b0d998336f9 |
source | Publicly Available Content Database |
subjects | Arrays Atomic properties Clock systems Clocks Clocks & watches Control stability Feedback control Geodesy Interrogation Metrology Monte Carlo simulation Neutral atoms Optical lattices Performance degradation Quantum computing Quantum entanglement Simulation Stability analysis Systematic errors |
title | An Atomic-Array Optical Clock with Single-Atom Readout |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Atomic-Array%20Optical%20Clock%20with%20Single-Atom%20Readout&rft.jtitle=Physical%20review.%20X&rft.au=Madjarov,%20Ivaylo%20S.&rft.date=2019-12-11&rft.volume=9&rft.issue=4&rft.spage=041052&rft.pages=041052-&rft.artnum=041052&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.9.041052&rft_dat=%3Cproquest_doaj_%3E2550627467%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-a0f5b6335a22e50b0b164ee3a6c3448682627126ecc0d852aec3a3d097902ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550627467&rft_id=info:pmid/&rfr_iscdi=true |