Loading…
Upconversion Photonic Doppler Velocimetry Based on Stimulated Brillouin Scattering
Optical up-conversion photonic Doppler velocimetry (PDV) based on stimulated Brillouin Scattering (SBS) with an all-fiber link structure is proposed in this article. Because SBS limits the laser power transmitted by a fiber over long distances, the probe does not have enough outgoing light to reach...
Saved in:
Published in: | Photonics 2024-02, Vol.11 (2), p.177 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optical up-conversion photonic Doppler velocimetry (PDV) based on stimulated Brillouin Scattering (SBS) with an all-fiber link structure is proposed in this article. Because SBS limits the laser power transmitted by a fiber over long distances, the probe does not have enough outgoing light to reach the measured surface and cannot receive the signal light. Traditionally, SBS is avoided, but it is a phase-conjugated light and shifts down relative to the source light, so it can be used as a reference light in the laser interference structure to achieve up-conversion heterodyne velocimetry. Compared with general homodyne velocimetry (DPS), SBS-PDV naturally upconverts and has more interference fringes and higher resolution at low-speed measurement. In the gas multiple reflection impact compression experiment, the velocity measurement results of SBS-PDV and dual-laser heterodyne Velocimetry (DLHV) are basically consistent, and the accuracy is better than 0.8%. Due to its coaxial heterodyne optical path, this kind of photonic Doppler velocimetry is suitable for low-velocity and long-distance practical applications in the field of shock wave physics. |
---|---|
ISSN: | 2304-6732 2304-6732 |
DOI: | 10.3390/photonics11020177 |