Loading…

A fast and accurate method to detect allelic genomic imbalances underlying mosaic rearrangements using SNP array data

Mosaicism for copy number and copy neutral chromosomal rearrangements has been recently identified as a relatively common source of genetic variation in the normal population. However its prevalence is poorly defined since it has been only studied systematically in one large-scale study and by using...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2011-05, Vol.12 (1), p.166-166, Article 166
Main Authors: González, Juan R, Rodríguez-Santiago, Benjamín, Cáceres, Alejandro, Pique-Regi, Roger, Rothman, Nathaniel, Chanock, Stephen J, Armengol, Lluís, Pérez-Jurado, Luis A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mosaicism for copy number and copy neutral chromosomal rearrangements has been recently identified as a relatively common source of genetic variation in the normal population. However its prevalence is poorly defined since it has been only studied systematically in one large-scale study and by using non optimal ad-hoc SNP array data analysis tools, uncovering rather large alterations (> 1 Mb) and affecting a high proportion of cells. Here we propose a novel methodology, Mosaic Alteration Detection-MAD, by providing a software tool that is effective for capturing previously described alterations as wells as new variants that are smaller in size and/or affecting a low percentage of cells. The developed method identified all previously known mosaic abnormalities reported in SNP array data obtained from controls, bladder cancer and HapMap individuals. In addition MAD tool was able to detect new mosaic variants not reported before that were smaller in size and with lower percentage of cells affected. The performance of the tool was analysed by studying simulated data for different scenarios. Our method showed high sensitivity and specificity for all assessed scenarios. The tool presented here has the ability to identify mosaic abnormalities with high sensitivity and specificity. Our results confirm the lack of sensitivity of former methods by identifying new mosaic variants not reported in previously utilised datasets. Our work suggests that the prevalence of mosaic alterations could be higher than initially thought. The use of appropriate SNP array data analysis methods would help in defining the human genome mosaic map.
ISSN:1471-2105
1471-2105
DOI:10.1186/1471-2105-12-166