Loading…

Relating brain structure images to personality characteristics using 3D convolution neural network

The Keras deep learning framework is employed to study MRI brain data in a preliminary analysis of brain structure using a convolutional neural network. The results obtained are matched with the content of personality questionnaires. The Big Five personality traits provide easy differentiation for d...

Full description

Saved in:
Bibliographic Details
Published in:CAAI Transactions on Intelligence Technology 2021-09, Vol.6 (3), p.338-346
Main Authors: Cao, Lixian, Liang, Yanchun, Lv, Wei, Park, Kaechang, Miura, Yasuhiro, Shinomiya, Yuki, Yoshida, Shinichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5361-60239baefbeb9d524996671483ec1d1ac3fa38530c879f3069fa3aac1db5a483
cites cdi_FETCH-LOGICAL-c5361-60239baefbeb9d524996671483ec1d1ac3fa38530c879f3069fa3aac1db5a483
container_end_page 346
container_issue 3
container_start_page 338
container_title CAAI Transactions on Intelligence Technology
container_volume 6
creator Cao, Lixian
Liang, Yanchun
Lv, Wei
Park, Kaechang
Miura, Yasuhiro
Shinomiya, Yuki
Yoshida, Shinichi
description The Keras deep learning framework is employed to study MRI brain data in a preliminary analysis of brain structure using a convolutional neural network. The results obtained are matched with the content of personality questionnaires. The Big Five personality traits provide easy differentiation for dividing personalities into different groups. Until now, the highest accuracy obtained from the results of personality prediction from the analysis of brain structure is about 70%. Although there is still no effective evidence to prove a clear relationship between brain structure and personality, the obtained results could prove helpful in understanding the basic relationship between brain structure and personality characteristics.
doi_str_mv 10.1049/cit2.12021
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3216ee01c4aa4eb5a76b78bfa7bf11d2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3216ee01c4aa4eb5a76b78bfa7bf11d2</doaj_id><sourcerecordid>3091980246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5361-60239baefbeb9d524996671483ec1d1ac3fa38530c879f3069fa3aac1db5a483</originalsourceid><addsrcrecordid>eNp9kVtLAzEQhRdRsFRf_AUB34TWXPaWR6m3QkGQvodJOltT101Nspb-e9OuiE8-TS7fOTPMybIrRqeM5vLW2MinjFPOTrIRz8t6wgXnp3_O59llCBtKKZNSFqIaZfoVW4i2WxPtwXYkRN-b2Hsk9gPWGEh0ZIs-uA5aG_fEvIEHE9HbEK0JpA8HrbgnxnVfru2jdR3psPfQphJ3zr9fZGcNtAEvf-o4Wz4-LGfPk8XL03x2t5iYQpRsUlIupAZsNGq5KnguZVlWLK8FGrZiYEQDoi4ENXUlG0FLme4A6U8XkKhxNh9sVw42auvT_H6vHFh1fHB-rcCnmVtUgrMSkTKTA-SY5FWpq1o3UOmGsRVPXteD19a7zx5DVBvX-7SCoASVTNY0rTRRNwNlvAvBY_PblVF1SEQdElHHRBLMBnhnW9z_Q6rZfMkHzTdFco7N</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091980246</pqid></control><display><type>article</type><title>Relating brain structure images to personality characteristics using 3D convolution neural network</title><source>IET Digital Library</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><creator>Cao, Lixian ; Liang, Yanchun ; Lv, Wei ; Park, Kaechang ; Miura, Yasuhiro ; Shinomiya, Yuki ; Yoshida, Shinichi</creator><creatorcontrib>Cao, Lixian ; Liang, Yanchun ; Lv, Wei ; Park, Kaechang ; Miura, Yasuhiro ; Shinomiya, Yuki ; Yoshida, Shinichi</creatorcontrib><description>The Keras deep learning framework is employed to study MRI brain data in a preliminary analysis of brain structure using a convolutional neural network. The results obtained are matched with the content of personality questionnaires. The Big Five personality traits provide easy differentiation for dividing personalities into different groups. Until now, the highest accuracy obtained from the results of personality prediction from the analysis of brain structure is about 70%. Although there is still no effective evidence to prove a clear relationship between brain structure and personality, the obtained results could prove helpful in understanding the basic relationship between brain structure and personality characteristics.</description><identifier>ISSN: 2468-2322</identifier><identifier>EISSN: 2468-2322</identifier><identifier>DOI: 10.1049/cit2.12021</identifier><language>eng</language><publisher>Beijing: John Wiley &amp; Sons, Inc</publisher><subject>Artificial neural networks ; Brain ; Brain research ; Experiments ; Machine learning ; Medical research ; Neural networks ; Neuroimaging ; Personal property ; Personality ; Personality traits ; Questionnaires</subject><ispartof>CAAI Transactions on Intelligence Technology, 2021-09, Vol.6 (3), p.338-346</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5361-60239baefbeb9d524996671483ec1d1ac3fa38530c879f3069fa3aac1db5a483</citedby><cites>FETCH-LOGICAL-c5361-60239baefbeb9d524996671483ec1d1ac3fa38530c879f3069fa3aac1db5a483</cites><orcidid>0000-0002-9610-7683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fcit2.12021$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3091980246?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,44590,46052,46476</link.rule.ids></links><search><creatorcontrib>Cao, Lixian</creatorcontrib><creatorcontrib>Liang, Yanchun</creatorcontrib><creatorcontrib>Lv, Wei</creatorcontrib><creatorcontrib>Park, Kaechang</creatorcontrib><creatorcontrib>Miura, Yasuhiro</creatorcontrib><creatorcontrib>Shinomiya, Yuki</creatorcontrib><creatorcontrib>Yoshida, Shinichi</creatorcontrib><title>Relating brain structure images to personality characteristics using 3D convolution neural network</title><title>CAAI Transactions on Intelligence Technology</title><description>The Keras deep learning framework is employed to study MRI brain data in a preliminary analysis of brain structure using a convolutional neural network. The results obtained are matched with the content of personality questionnaires. The Big Five personality traits provide easy differentiation for dividing personalities into different groups. Until now, the highest accuracy obtained from the results of personality prediction from the analysis of brain structure is about 70%. Although there is still no effective evidence to prove a clear relationship between brain structure and personality, the obtained results could prove helpful in understanding the basic relationship between brain structure and personality characteristics.</description><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain research</subject><subject>Experiments</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Personal property</subject><subject>Personality</subject><subject>Personality traits</subject><subject>Questionnaires</subject><issn>2468-2322</issn><issn>2468-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kVtLAzEQhRdRsFRf_AUB34TWXPaWR6m3QkGQvodJOltT101Nspb-e9OuiE8-TS7fOTPMybIrRqeM5vLW2MinjFPOTrIRz8t6wgXnp3_O59llCBtKKZNSFqIaZfoVW4i2WxPtwXYkRN-b2Hsk9gPWGEh0ZIs-uA5aG_fEvIEHE9HbEK0JpA8HrbgnxnVfru2jdR3psPfQphJ3zr9fZGcNtAEvf-o4Wz4-LGfPk8XL03x2t5iYQpRsUlIupAZsNGq5KnguZVlWLK8FGrZiYEQDoi4ENXUlG0FLme4A6U8XkKhxNh9sVw42auvT_H6vHFh1fHB-rcCnmVtUgrMSkTKTA-SY5FWpq1o3UOmGsRVPXteD19a7zx5DVBvX-7SCoASVTNY0rTRRNwNlvAvBY_PblVF1SEQdElHHRBLMBnhnW9z_Q6rZfMkHzTdFco7N</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Cao, Lixian</creator><creator>Liang, Yanchun</creator><creator>Lv, Wei</creator><creator>Park, Kaechang</creator><creator>Miura, Yasuhiro</creator><creator>Shinomiya, Yuki</creator><creator>Yoshida, Shinichi</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9610-7683</orcidid></search><sort><creationdate>202109</creationdate><title>Relating brain structure images to personality characteristics using 3D convolution neural network</title><author>Cao, Lixian ; Liang, Yanchun ; Lv, Wei ; Park, Kaechang ; Miura, Yasuhiro ; Shinomiya, Yuki ; Yoshida, Shinichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5361-60239baefbeb9d524996671483ec1d1ac3fa38530c879f3069fa3aac1db5a483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain research</topic><topic>Experiments</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Personal property</topic><topic>Personality</topic><topic>Personality traits</topic><topic>Questionnaires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Lixian</creatorcontrib><creatorcontrib>Liang, Yanchun</creatorcontrib><creatorcontrib>Lv, Wei</creatorcontrib><creatorcontrib>Park, Kaechang</creatorcontrib><creatorcontrib>Miura, Yasuhiro</creatorcontrib><creatorcontrib>Shinomiya, Yuki</creatorcontrib><creatorcontrib>Yoshida, Shinichi</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>CAAI Transactions on Intelligence Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Lixian</au><au>Liang, Yanchun</au><au>Lv, Wei</au><au>Park, Kaechang</au><au>Miura, Yasuhiro</au><au>Shinomiya, Yuki</au><au>Yoshida, Shinichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relating brain structure images to personality characteristics using 3D convolution neural network</atitle><jtitle>CAAI Transactions on Intelligence Technology</jtitle><date>2021-09</date><risdate>2021</risdate><volume>6</volume><issue>3</issue><spage>338</spage><epage>346</epage><pages>338-346</pages><issn>2468-2322</issn><eissn>2468-2322</eissn><abstract>The Keras deep learning framework is employed to study MRI brain data in a preliminary analysis of brain structure using a convolutional neural network. The results obtained are matched with the content of personality questionnaires. The Big Five personality traits provide easy differentiation for dividing personalities into different groups. Until now, the highest accuracy obtained from the results of personality prediction from the analysis of brain structure is about 70%. Although there is still no effective evidence to prove a clear relationship between brain structure and personality, the obtained results could prove helpful in understanding the basic relationship between brain structure and personality characteristics.</abstract><cop>Beijing</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1049/cit2.12021</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9610-7683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2468-2322
ispartof CAAI Transactions on Intelligence Technology, 2021-09, Vol.6 (3), p.338-346
issn 2468-2322
2468-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3216ee01c4aa4eb5a76b78bfa7bf11d2
source IET Digital Library; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access
subjects Artificial neural networks
Brain
Brain research
Experiments
Machine learning
Medical research
Neural networks
Neuroimaging
Personal property
Personality
Personality traits
Questionnaires
title Relating brain structure images to personality characteristics using 3D convolution neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relating%20brain%20structure%20images%20to%20personality%20characteristics%20using%203D%20convolution%20neural%20network&rft.jtitle=CAAI%20Transactions%20on%20Intelligence%20Technology&rft.au=Cao,%20Lixian&rft.date=2021-09&rft.volume=6&rft.issue=3&rft.spage=338&rft.epage=346&rft.pages=338-346&rft.issn=2468-2322&rft.eissn=2468-2322&rft_id=info:doi/10.1049/cit2.12021&rft_dat=%3Cproquest_doaj_%3E3091980246%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5361-60239baefbeb9d524996671483ec1d1ac3fa38530c879f3069fa3aac1db5a483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3091980246&rft_id=info:pmid/&rfr_iscdi=true