Loading…
Normalization and centering of array-based heterologous genome hybridization based on divergent control probes
Hybridization of heterologous (non-specific) nucleic acids onto arrays designed for model-organisms has been proposed as a viable genomic resource for estimating sequence variation and gene expression in non-model organisms. However, conventional methods of normalization that assume equivalent distr...
Saved in:
Published in: | BMC bioinformatics 2011-05, Vol.12 (1), p.183-183, Article 183 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b622t-d507ff2350a2f548c868f10c17c647907577edf55cc755956a170e06d37d8e253 |
---|---|
cites | cdi_FETCH-LOGICAL-b622t-d507ff2350a2f548c868f10c17c647907577edf55cc755956a170e06d37d8e253 |
container_end_page | 183 |
container_issue | 1 |
container_start_page | 183 |
container_title | BMC bioinformatics |
container_volume | 12 |
creator | Darby, Brian J Jones, Kenneth L Wheeler, David Herman, Michael A |
description | Hybridization of heterologous (non-specific) nucleic acids onto arrays designed for model-organisms has been proposed as a viable genomic resource for estimating sequence variation and gene expression in non-model organisms. However, conventional methods of normalization that assume equivalent distributions (such as quantile normalization) are inappropriate when applied to non-specific (heterologous) hybridization. We propose an algorithm for normalizing and centering intensity data from heterologous hybridization that makes no prior assumptions of distribution, reduces the false appearance of homology, and provides a way for researchers to confirm whether heterologous hybridization is suitable.
Data are normalized by adjusting for Gibbs free energy binding, and centered by adjusting for the median of a common set of control probes assumed to be equivalently dissimilar for all species. This procedure was compared to existing approaches and found to be as successful as Loess normalization at detecting sequence variations (deletions) and even more successful than quantile normalization at reducing the accumulation of false positive probe matches between two related nematode species, Caenorhabditis elegans and C. briggsae. Despite the improvements, we still found that probe fluorescence intensity was too poorly correlated with sequence similarity to result in reliable detection of matching probe sequence.
Cross-species hybridizations can be a way to adapt genome-enabled tools for closely related non-model organisms, but data must be appropriately normalized and centered in a way that accommodates hybridization of nucleic acids with diverged sequence. For short, 25-mer probes, hybridization intensity alone may be insufficiently correlated with sequence similarity to allow reliable inference of homology at the probe level. |
doi_str_mv | 10.1186/1471-2105-12-183 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_322a7bc7f3e84bb9a475612236eee08a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A260001748</galeid><doaj_id>oai_doaj_org_article_322a7bc7f3e84bb9a475612236eee08a</doaj_id><sourcerecordid>A260001748</sourcerecordid><originalsourceid>FETCH-LOGICAL-b622t-d507ff2350a2f548c868f10c17c647907577edf55cc755956a170e06d37d8e253</originalsourceid><addsrcrecordid>eNp1kt1rFDEUxQdRbK2--yQDPogPU_MxmWRfhLJYXSgKfjyHTHIzmzKTrMlscf3rm3HapQOVPCTcnPMj954UxWuMzjEWzQdcc1wRjFiFSYUFfVKcHktPH5xPihcpXSOEuUDseXFCcIMQIqvTwn8NcVC9-6tGF3ypvCk1-BGi810ZbKliVIeqVQlMuYVcD33owj6VHfgwQLk9tNGZe_usywfjbiBmyVjq4MdsKncxtJBeFs-s6hO8utvPil-Xn36uv1RX3z5v1hdXVdsQMlaGIW4toQwpYlkttGiExUhjrpuarxBnnIOxjGnNGVuxRmGOADWGciOAMHpWbGauCepa7qIbVDzIoJz8VwixkyqOTvcgKSGKt5pbCqJu25WqOWswIbQBACRUZn2cWbt9O4CZxhNVv4Aub7zbyi7cSIoJIw3JgPUMaF34D2B5o8Mgp-zklJ3EROZoM-Xd3TNi-L2HNMrBJQ19rzzkQKTgNVmJmvKsfDsrO5X7c96GTNWTWl6QKXjMa5FV54-o8jIwuJwaWJfrC8P7hWFKFv6MndqnJDc_vi-1aNbqGFKKYI_dYiSnr_tYf28ejvlouP-r9BbRbekq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874298437</pqid></control><display><type>article</type><title>Normalization and centering of array-based heterologous genome hybridization based on divergent control probes</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Darby, Brian J ; Jones, Kenneth L ; Wheeler, David ; Herman, Michael A</creator><creatorcontrib>Darby, Brian J ; Jones, Kenneth L ; Wheeler, David ; Herman, Michael A</creatorcontrib><description>Hybridization of heterologous (non-specific) nucleic acids onto arrays designed for model-organisms has been proposed as a viable genomic resource for estimating sequence variation and gene expression in non-model organisms. However, conventional methods of normalization that assume equivalent distributions (such as quantile normalization) are inappropriate when applied to non-specific (heterologous) hybridization. We propose an algorithm for normalizing and centering intensity data from heterologous hybridization that makes no prior assumptions of distribution, reduces the false appearance of homology, and provides a way for researchers to confirm whether heterologous hybridization is suitable.
Data are normalized by adjusting for Gibbs free energy binding, and centered by adjusting for the median of a common set of control probes assumed to be equivalently dissimilar for all species. This procedure was compared to existing approaches and found to be as successful as Loess normalization at detecting sequence variations (deletions) and even more successful than quantile normalization at reducing the accumulation of false positive probe matches between two related nematode species, Caenorhabditis elegans and C. briggsae. Despite the improvements, we still found that probe fluorescence intensity was too poorly correlated with sequence similarity to result in reliable detection of matching probe sequence.
Cross-species hybridizations can be a way to adapt genome-enabled tools for closely related non-model organisms, but data must be appropriately normalized and centered in a way that accommodates hybridization of nucleic acids with diverged sequence. For short, 25-mer probes, hybridization intensity alone may be insufficiently correlated with sequence similarity to allow reliable inference of homology at the probe level.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-12-183</identifier><identifier>PMID: 21600029</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Animals ; Caenorhabditis - classification ; Caenorhabditis - genetics ; Caenorhabditis elegans - genetics ; Gene expression ; Genome ; Genomics ; Hybridization ; Nucleic Acid Hybridization - methods ; Oligonucleotide Array Sequence Analysis - methods ; Software</subject><ispartof>BMC bioinformatics, 2011-05, Vol.12 (1), p.183-183, Article 183</ispartof><rights>COPYRIGHT 2011 BioMed Central Ltd.</rights><rights>Copyright ©2011 Darby et al; licensee BioMed Central Ltd. 2011 Darby et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b622t-d507ff2350a2f548c868f10c17c647907577edf55cc755956a170e06d37d8e253</citedby><cites>FETCH-LOGICAL-b622t-d507ff2350a2f548c868f10c17c647907577edf55cc755956a170e06d37d8e253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125262/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125262/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,36994,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21600029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Darby, Brian J</creatorcontrib><creatorcontrib>Jones, Kenneth L</creatorcontrib><creatorcontrib>Wheeler, David</creatorcontrib><creatorcontrib>Herman, Michael A</creatorcontrib><title>Normalization and centering of array-based heterologous genome hybridization based on divergent control probes</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Hybridization of heterologous (non-specific) nucleic acids onto arrays designed for model-organisms has been proposed as a viable genomic resource for estimating sequence variation and gene expression in non-model organisms. However, conventional methods of normalization that assume equivalent distributions (such as quantile normalization) are inappropriate when applied to non-specific (heterologous) hybridization. We propose an algorithm for normalizing and centering intensity data from heterologous hybridization that makes no prior assumptions of distribution, reduces the false appearance of homology, and provides a way for researchers to confirm whether heterologous hybridization is suitable.
Data are normalized by adjusting for Gibbs free energy binding, and centered by adjusting for the median of a common set of control probes assumed to be equivalently dissimilar for all species. This procedure was compared to existing approaches and found to be as successful as Loess normalization at detecting sequence variations (deletions) and even more successful than quantile normalization at reducing the accumulation of false positive probe matches between two related nematode species, Caenorhabditis elegans and C. briggsae. Despite the improvements, we still found that probe fluorescence intensity was too poorly correlated with sequence similarity to result in reliable detection of matching probe sequence.
Cross-species hybridizations can be a way to adapt genome-enabled tools for closely related non-model organisms, but data must be appropriately normalized and centered in a way that accommodates hybridization of nucleic acids with diverged sequence. For short, 25-mer probes, hybridization intensity alone may be insufficiently correlated with sequence similarity to allow reliable inference of homology at the probe level.</description><subject>Animals</subject><subject>Caenorhabditis - classification</subject><subject>Caenorhabditis - genetics</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Gene expression</subject><subject>Genome</subject><subject>Genomics</subject><subject>Hybridization</subject><subject>Nucleic Acid Hybridization - methods</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Software</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kt1rFDEUxQdRbK2--yQDPogPU_MxmWRfhLJYXSgKfjyHTHIzmzKTrMlscf3rm3HapQOVPCTcnPMj954UxWuMzjEWzQdcc1wRjFiFSYUFfVKcHktPH5xPihcpXSOEuUDseXFCcIMQIqvTwn8NcVC9-6tGF3ypvCk1-BGi810ZbKliVIeqVQlMuYVcD33owj6VHfgwQLk9tNGZe_usywfjbiBmyVjq4MdsKncxtJBeFs-s6hO8utvPil-Xn36uv1RX3z5v1hdXVdsQMlaGIW4toQwpYlkttGiExUhjrpuarxBnnIOxjGnNGVuxRmGOADWGciOAMHpWbGauCepa7qIbVDzIoJz8VwixkyqOTvcgKSGKt5pbCqJu25WqOWswIbQBACRUZn2cWbt9O4CZxhNVv4Aub7zbyi7cSIoJIw3JgPUMaF34D2B5o8Mgp-zklJ3EROZoM-Xd3TNi-L2HNMrBJQ19rzzkQKTgNVmJmvKsfDsrO5X7c96GTNWTWl6QKXjMa5FV54-o8jIwuJwaWJfrC8P7hWFKFv6MndqnJDc_vi-1aNbqGFKKYI_dYiSnr_tYf28ejvlouP-r9BbRbekq</recordid><startdate>20110521</startdate><enddate>20110521</enddate><creator>Darby, Brian J</creator><creator>Jones, Kenneth L</creator><creator>Wheeler, David</creator><creator>Herman, Michael A</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110521</creationdate><title>Normalization and centering of array-based heterologous genome hybridization based on divergent control probes</title><author>Darby, Brian J ; Jones, Kenneth L ; Wheeler, David ; Herman, Michael A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b622t-d507ff2350a2f548c868f10c17c647907577edf55cc755956a170e06d37d8e253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Caenorhabditis - classification</topic><topic>Caenorhabditis - genetics</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Gene expression</topic><topic>Genome</topic><topic>Genomics</topic><topic>Hybridization</topic><topic>Nucleic Acid Hybridization - methods</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darby, Brian J</creatorcontrib><creatorcontrib>Jones, Kenneth L</creatorcontrib><creatorcontrib>Wheeler, David</creatorcontrib><creatorcontrib>Herman, Michael A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darby, Brian J</au><au>Jones, Kenneth L</au><au>Wheeler, David</au><au>Herman, Michael A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normalization and centering of array-based heterologous genome hybridization based on divergent control probes</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2011-05-21</date><risdate>2011</risdate><volume>12</volume><issue>1</issue><spage>183</spage><epage>183</epage><pages>183-183</pages><artnum>183</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Hybridization of heterologous (non-specific) nucleic acids onto arrays designed for model-organisms has been proposed as a viable genomic resource for estimating sequence variation and gene expression in non-model organisms. However, conventional methods of normalization that assume equivalent distributions (such as quantile normalization) are inappropriate when applied to non-specific (heterologous) hybridization. We propose an algorithm for normalizing and centering intensity data from heterologous hybridization that makes no prior assumptions of distribution, reduces the false appearance of homology, and provides a way for researchers to confirm whether heterologous hybridization is suitable.
Data are normalized by adjusting for Gibbs free energy binding, and centered by adjusting for the median of a common set of control probes assumed to be equivalently dissimilar for all species. This procedure was compared to existing approaches and found to be as successful as Loess normalization at detecting sequence variations (deletions) and even more successful than quantile normalization at reducing the accumulation of false positive probe matches between two related nematode species, Caenorhabditis elegans and C. briggsae. Despite the improvements, we still found that probe fluorescence intensity was too poorly correlated with sequence similarity to result in reliable detection of matching probe sequence.
Cross-species hybridizations can be a way to adapt genome-enabled tools for closely related non-model organisms, but data must be appropriately normalized and centered in a way that accommodates hybridization of nucleic acids with diverged sequence. For short, 25-mer probes, hybridization intensity alone may be insufficiently correlated with sequence similarity to allow reliable inference of homology at the probe level.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>21600029</pmid><doi>10.1186/1471-2105-12-183</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2011-05, Vol.12 (1), p.183-183, Article 183 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_322a7bc7f3e84bb9a475612236eee08a |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Animals Caenorhabditis - classification Caenorhabditis - genetics Caenorhabditis elegans - genetics Gene expression Genome Genomics Hybridization Nucleic Acid Hybridization - methods Oligonucleotide Array Sequence Analysis - methods Software |
title | Normalization and centering of array-based heterologous genome hybridization based on divergent control probes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normalization%20and%20centering%20of%20array-based%20heterologous%20genome%20hybridization%20based%20on%20divergent%20control%20probes&rft.jtitle=BMC%20bioinformatics&rft.au=Darby,%20Brian%20J&rft.date=2011-05-21&rft.volume=12&rft.issue=1&rft.spage=183&rft.epage=183&rft.pages=183-183&rft.artnum=183&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-12-183&rft_dat=%3Cgale_doaj_%3EA260001748%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b622t-d507ff2350a2f548c868f10c17c647907577edf55cc755956a170e06d37d8e253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=874298437&rft_id=info:pmid/21600029&rft_galeid=A260001748&rfr_iscdi=true |