Loading…

Recognition of 3D Images by Fusing Fractional-Order Chebyshev Moments and Deep Neural Networks

In order to achieve efficient recognition of 3D images and reduce the complexity of network parameters, we proposed a novel 3D image recognition method combining deep neural networks with fractional-order Chebyshev moments. Firstly, the fractional-order Chebyshev moment (FrCM) unit, consisting of Ch...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-04, Vol.24 (7), p.2352
Main Authors: Gao, Lin, Zhang, Xuyang, Zhao, Mingrui, Zhang, Jinyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c441t-506d7c5e9274ea6a8963cb137de0b7df9ee32fa6e0cadfce1b20c486ce3d3b13
container_end_page
container_issue 7
container_start_page 2352
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Gao, Lin
Zhang, Xuyang
Zhao, Mingrui
Zhang, Jinyi
description In order to achieve efficient recognition of 3D images and reduce the complexity of network parameters, we proposed a novel 3D image recognition method combining deep neural networks with fractional-order Chebyshev moments. Firstly, the fractional-order Chebyshev moment (FrCM) unit, consisting of Chebyshev moments and the three-term recurrence relation method, is calculated separately using successive integrals. Next, moment invariants based on fractional order and Chebyshev moments are utilized to achieve invariants for image scaling, rotation, and translation. This design aims to enhance computational efficiency. Finally, the fused network embedding the FrCM unit (FrCMs-DNNs) extracts depth features to analyze the effectiveness from the aspects of parameter quantity, computing resources, and identification capability. Meanwhile, the Princeton Shape Benchmark dataset and medical images dataset are used for experimental validation. Compared with other deep neural networks, FrCMs-DNNs has the highest accuracy in image recognition and classification. We used two evaluation indices, mean square error (MSE) and peak signal-to-noise ratio (PSNR), to measure the reconstruction quality of FrCMs after 3D image reconstruction. The accuracy of the FrCMs-DNNs model in 3D object recognition was assessed through an ablation experiment, considering the four evaluation indices of accuracy, precision, recall rate, and F1-score.
doi_str_mv 10.3390/s24072352
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_322adde2009c4587891fea3809ca81ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A790021412</galeid><doaj_id>oai_doaj_org_article_322adde2009c4587891fea3809ca81ce</doaj_id><sourcerecordid>A790021412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-506d7c5e9274ea6a8963cb137de0b7df9ee32fa6e0cadfce1b20c486ce3d3b13</originalsourceid><addsrcrecordid>eNptkk1v1DAQhi0EomXhwB9AlriUQ4rtcRLnWG27sFKhEuoZy7EnaZYkXuwEtP--3m5ZPoR8GHv8zGt7_BLymrNzgIq9j0KyUkAunpBTLoXMlBDs6R_zE_Iixg1jAgDUc3ICquAsL-Qp-foFrW_Hbur8SH1D4ZKuB9NipPWOrubYjS1dBWP3-6bPboLDQJd3WO_iHf6gn_yA4xSpGR29RNzSzzgH06cw_fThW3xJnjWmj_jqMS7I7erqdvkxu775sF5eXGdWSj5lOStcaXOsRCnRFEZVBdiaQ-mQ1aVrKkQQjSmQWeMai7wWzEpVWAQHiVuQ9UHWebPR29ANJuy0N51-SPjQahOmzvaoQQjjHArGKitzVaqKN2hApaVRPAkuyNlBaxv89xnjpIcuWux7M6KfowYGSkJVlJDQt_-gGz-H1KcHqiyAC1H9plqTzu_Gxk-poXtRfVFW6VO45CJR5_-h0nA4dNaP2HQp_1fBu0OBDT7GgM3x3ZzpvS300RaJffN40bke0B3JXz6Ae5aHrwY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037631229</pqid></control><display><type>article</type><title>Recognition of 3D Images by Fusing Fractional-Order Chebyshev Moments and Deep Neural Networks</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Gao, Lin ; Zhang, Xuyang ; Zhao, Mingrui ; Zhang, Jinyi</creator><creatorcontrib>Gao, Lin ; Zhang, Xuyang ; Zhao, Mingrui ; Zhang, Jinyi</creatorcontrib><description>In order to achieve efficient recognition of 3D images and reduce the complexity of network parameters, we proposed a novel 3D image recognition method combining deep neural networks with fractional-order Chebyshev moments. Firstly, the fractional-order Chebyshev moment (FrCM) unit, consisting of Chebyshev moments and the three-term recurrence relation method, is calculated separately using successive integrals. Next, moment invariants based on fractional order and Chebyshev moments are utilized to achieve invariants for image scaling, rotation, and translation. This design aims to enhance computational efficiency. Finally, the fused network embedding the FrCM unit (FrCMs-DNNs) extracts depth features to analyze the effectiveness from the aspects of parameter quantity, computing resources, and identification capability. Meanwhile, the Princeton Shape Benchmark dataset and medical images dataset are used for experimental validation. Compared with other deep neural networks, FrCMs-DNNs has the highest accuracy in image recognition and classification. We used two evaluation indices, mean square error (MSE) and peak signal-to-noise ratio (PSNR), to measure the reconstruction quality of FrCMs after 3D image reconstruction. The accuracy of the FrCMs-DNNs model in 3D object recognition was assessed through an ablation experiment, considering the four evaluation indices of accuracy, precision, recall rate, and F1-score.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24072352</identifier><identifier>PMID: 38610564</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Chebyshev moments ; deep neural network ; Efficiency ; fractional order ; image recognition ; Medical imaging equipment ; Methods ; Neural networks ; Polynomials ; Target recognition ; Three dimensional imaging</subject><ispartof>Sensors (Basel, Switzerland), 2024-04, Vol.24 (7), p.2352</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c441t-506d7c5e9274ea6a8963cb137de0b7df9ee32fa6e0cadfce1b20c486ce3d3b13</cites><orcidid>0000-0002-9813-217X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3037631229/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3037631229?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38610564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Lin</creatorcontrib><creatorcontrib>Zhang, Xuyang</creatorcontrib><creatorcontrib>Zhao, Mingrui</creatorcontrib><creatorcontrib>Zhang, Jinyi</creatorcontrib><title>Recognition of 3D Images by Fusing Fractional-Order Chebyshev Moments and Deep Neural Networks</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In order to achieve efficient recognition of 3D images and reduce the complexity of network parameters, we proposed a novel 3D image recognition method combining deep neural networks with fractional-order Chebyshev moments. Firstly, the fractional-order Chebyshev moment (FrCM) unit, consisting of Chebyshev moments and the three-term recurrence relation method, is calculated separately using successive integrals. Next, moment invariants based on fractional order and Chebyshev moments are utilized to achieve invariants for image scaling, rotation, and translation. This design aims to enhance computational efficiency. Finally, the fused network embedding the FrCM unit (FrCMs-DNNs) extracts depth features to analyze the effectiveness from the aspects of parameter quantity, computing resources, and identification capability. Meanwhile, the Princeton Shape Benchmark dataset and medical images dataset are used for experimental validation. Compared with other deep neural networks, FrCMs-DNNs has the highest accuracy in image recognition and classification. We used two evaluation indices, mean square error (MSE) and peak signal-to-noise ratio (PSNR), to measure the reconstruction quality of FrCMs after 3D image reconstruction. The accuracy of the FrCMs-DNNs model in 3D object recognition was assessed through an ablation experiment, considering the four evaluation indices of accuracy, precision, recall rate, and F1-score.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Chebyshev moments</subject><subject>deep neural network</subject><subject>Efficiency</subject><subject>fractional order</subject><subject>image recognition</subject><subject>Medical imaging equipment</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Target recognition</subject><subject>Three dimensional imaging</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhi0EomXhwB9AlriUQ4rtcRLnWG27sFKhEuoZy7EnaZYkXuwEtP--3m5ZPoR8GHv8zGt7_BLymrNzgIq9j0KyUkAunpBTLoXMlBDs6R_zE_Iixg1jAgDUc3ICquAsL-Qp-foFrW_Hbur8SH1D4ZKuB9NipPWOrubYjS1dBWP3-6bPboLDQJd3WO_iHf6gn_yA4xSpGR29RNzSzzgH06cw_fThW3xJnjWmj_jqMS7I7erqdvkxu775sF5eXGdWSj5lOStcaXOsRCnRFEZVBdiaQ-mQ1aVrKkQQjSmQWeMai7wWzEpVWAQHiVuQ9UHWebPR29ANJuy0N51-SPjQahOmzvaoQQjjHArGKitzVaqKN2hApaVRPAkuyNlBaxv89xnjpIcuWux7M6KfowYGSkJVlJDQt_-gGz-H1KcHqiyAC1H9plqTzu_Gxk-poXtRfVFW6VO45CJR5_-h0nA4dNaP2HQp_1fBu0OBDT7GgM3x3ZzpvS300RaJffN40bke0B3JXz6Ae5aHrwY</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Gao, Lin</creator><creator>Zhang, Xuyang</creator><creator>Zhao, Mingrui</creator><creator>Zhang, Jinyi</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9813-217X</orcidid></search><sort><creationdate>20240401</creationdate><title>Recognition of 3D Images by Fusing Fractional-Order Chebyshev Moments and Deep Neural Networks</title><author>Gao, Lin ; Zhang, Xuyang ; Zhao, Mingrui ; Zhang, Jinyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-506d7c5e9274ea6a8963cb137de0b7df9ee32fa6e0cadfce1b20c486ce3d3b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Chebyshev moments</topic><topic>deep neural network</topic><topic>Efficiency</topic><topic>fractional order</topic><topic>image recognition</topic><topic>Medical imaging equipment</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Target recognition</topic><topic>Three dimensional imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Lin</creatorcontrib><creatorcontrib>Zhang, Xuyang</creatorcontrib><creatorcontrib>Zhao, Mingrui</creatorcontrib><creatorcontrib>Zhang, Jinyi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Lin</au><au>Zhang, Xuyang</au><au>Zhao, Mingrui</au><au>Zhang, Jinyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recognition of 3D Images by Fusing Fractional-Order Chebyshev Moments and Deep Neural Networks</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>7</issue><spage>2352</spage><pages>2352-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In order to achieve efficient recognition of 3D images and reduce the complexity of network parameters, we proposed a novel 3D image recognition method combining deep neural networks with fractional-order Chebyshev moments. Firstly, the fractional-order Chebyshev moment (FrCM) unit, consisting of Chebyshev moments and the three-term recurrence relation method, is calculated separately using successive integrals. Next, moment invariants based on fractional order and Chebyshev moments are utilized to achieve invariants for image scaling, rotation, and translation. This design aims to enhance computational efficiency. Finally, the fused network embedding the FrCM unit (FrCMs-DNNs) extracts depth features to analyze the effectiveness from the aspects of parameter quantity, computing resources, and identification capability. Meanwhile, the Princeton Shape Benchmark dataset and medical images dataset are used for experimental validation. Compared with other deep neural networks, FrCMs-DNNs has the highest accuracy in image recognition and classification. We used two evaluation indices, mean square error (MSE) and peak signal-to-noise ratio (PSNR), to measure the reconstruction quality of FrCMs after 3D image reconstruction. The accuracy of the FrCMs-DNNs model in 3D object recognition was assessed through an ablation experiment, considering the four evaluation indices of accuracy, precision, recall rate, and F1-score.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38610564</pmid><doi>10.3390/s24072352</doi><orcidid>https://orcid.org/0000-0002-9813-217X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-04, Vol.24 (7), p.2352
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_322adde2009c4587891fea3809ca81ce
source Publicly Available Content Database; PubMed Central
subjects Accuracy
Algorithms
Analysis
Chebyshev moments
deep neural network
Efficiency
fractional order
image recognition
Medical imaging equipment
Methods
Neural networks
Polynomials
Target recognition
Three dimensional imaging
title Recognition of 3D Images by Fusing Fractional-Order Chebyshev Moments and Deep Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recognition%20of%203D%20Images%20by%20Fusing%20Fractional-Order%20Chebyshev%20Moments%20and%20Deep%20Neural%20Networks&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Gao,%20Lin&rft.date=2024-04-01&rft.volume=24&rft.issue=7&rft.spage=2352&rft.pages=2352-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24072352&rft_dat=%3Cgale_doaj_%3EA790021412%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-506d7c5e9274ea6a8963cb137de0b7df9ee32fa6e0cadfce1b20c486ce3d3b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037631229&rft_id=info:pmid/38610564&rft_galeid=A790021412&rfr_iscdi=true