Loading…
A Multi-View Vision System for Astronaut Postural Reconstruction with Self-Calibration
Space exploration missions involve significant participation from astronauts. Therefore, it is of great practical importance to assess the astronauts’ performance via various parameters in the cramped and weightless space station. In this paper, we proposed a calibration-free multi-view vision syste...
Saved in:
Published in: | Aerospace 2023-03, Vol.10 (3), p.298 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-b1d75844116655eb2f6eefea38b39876936c8473448503905725af4118ccef973 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-b1d75844116655eb2f6eefea38b39876936c8473448503905725af4118ccef973 |
container_end_page | |
container_issue | 3 |
container_start_page | 298 |
container_title | Aerospace |
container_volume | 10 |
creator | Gan, Shuwei Zhang, Xiaohu Zhuge, Sheng Ning, Chenghao Zhong, Lijun Li, You |
description | Space exploration missions involve significant participation from astronauts. Therefore, it is of great practical importance to assess the astronauts’ performance via various parameters in the cramped and weightless space station. In this paper, we proposed a calibration-free multi-view vision system for astronaut performance capture, including two modules: (1) an alternating iterative optimization of the camera pose and human pose is implemented to calibrate the extrinsic camera parameters with detected 2D keypoints. (2) Scale factors are restricted by the limb length to recover the real-world scale and the shape parameters are refined for subsequent postural reconstruction. These two modules can provide effective and efficient motion capture in a weightless space station. Extensive experiments using public datasets and the ground verification test data demonstrated the accuracy of the estimated camera pose and the effectiveness of the reconstructed human pose. |
doi_str_mv | 10.3390/aerospace10030298 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_32348863ebc74f5ba9d363974ec27986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743461455</galeid><doaj_id>oai_doaj_org_article_32348863ebc74f5ba9d363974ec27986</doaj_id><sourcerecordid>A743461455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-b1d75844116655eb2f6eefea38b39876936c8473448503905725af4118ccef973</originalsourceid><addsrcrecordid>eNplkUtrGzEUhUVpIcHJD8huoOtJ9H4sjenDkNCQpN4KjXyVyoxHrqQh5N9HrksJVFrocvTdw5UOQlcEXzNm8I2DnMrBeSAYM0yN_oDOKaWy54zgj-_qM3RZyg63ZQjTWJyjzbK7m8ca-02El24TS0xT9_haKuy7kHK3LDWnyc21u0-lztmN3QP4NDV59vUIv8T6q3uEMfQrN8Yhu6N6gT4FNxa4_Hsu0M-vX55W3_vbH9_Wq-Vt7zkltR_IVgnNOSFSCgEDDRIggGN6YEYraZj0mivGuRa4vVQoKlxouPYeglFsgdYn321yO3vIce_yq00u2j9Cys_W5Rr9CJZRxrWWDAaveBCDM1smmVEcPFWmXSzQ55PXIaffM5Rqd2nOUxvfNoAIQTExjbo-Uc-umcYppJqdb3sL-9g-BkJs-lJxxiXhQrQGcmrwLaSSIfwbk2B7jM_-Fx97A0CDjXo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791552019</pqid></control><display><type>article</type><title>A Multi-View Vision System for Astronaut Postural Reconstruction with Self-Calibration</title><source>Publicly Available Content Database</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gan, Shuwei ; Zhang, Xiaohu ; Zhuge, Sheng ; Ning, Chenghao ; Zhong, Lijun ; Li, You</creator><creatorcontrib>Gan, Shuwei ; Zhang, Xiaohu ; Zhuge, Sheng ; Ning, Chenghao ; Zhong, Lijun ; Li, You</creatorcontrib><description>Space exploration missions involve significant participation from astronauts. Therefore, it is of great practical importance to assess the astronauts’ performance via various parameters in the cramped and weightless space station. In this paper, we proposed a calibration-free multi-view vision system for astronaut performance capture, including two modules: (1) an alternating iterative optimization of the camera pose and human pose is implemented to calibrate the extrinsic camera parameters with detected 2D keypoints. (2) Scale factors are restricted by the limb length to recover the real-world scale and the shape parameters are refined for subsequent postural reconstruction. These two modules can provide effective and efficient motion capture in a weightless space station. Extensive experiments using public datasets and the ground verification test data demonstrated the accuracy of the estimated camera pose and the effectiveness of the reconstructed human pose.</description><identifier>ISSN: 2226-4310</identifier><identifier>EISSN: 2226-4310</identifier><identifier>DOI: 10.3390/aerospace10030298</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Astronaut performance ; astronaut performance capture ; Astronauts ; Calibration ; Cameras ; Discovery and exploration ; extrinsic camera calibration ; Human body ; Human performance ; human pose estimation ; Kinematics ; Modules ; Moon ; Motion capture ; multi-view system ; Neural networks ; Optimization ; Outer space ; Parameter estimation ; Parameters ; Posture ; Reconstruction ; Self calibration ; Sensors ; Space exploration ; Space missions ; Space stations ; Spacecraft modules ; Vision systems ; Workloads</subject><ispartof>Aerospace, 2023-03, Vol.10 (3), p.298</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-b1d75844116655eb2f6eefea38b39876936c8473448503905725af4118ccef973</citedby><cites>FETCH-LOGICAL-c421t-b1d75844116655eb2f6eefea38b39876936c8473448503905725af4118ccef973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791552019/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791552019?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Gan, Shuwei</creatorcontrib><creatorcontrib>Zhang, Xiaohu</creatorcontrib><creatorcontrib>Zhuge, Sheng</creatorcontrib><creatorcontrib>Ning, Chenghao</creatorcontrib><creatorcontrib>Zhong, Lijun</creatorcontrib><creatorcontrib>Li, You</creatorcontrib><title>A Multi-View Vision System for Astronaut Postural Reconstruction with Self-Calibration</title><title>Aerospace</title><description>Space exploration missions involve significant participation from astronauts. Therefore, it is of great practical importance to assess the astronauts’ performance via various parameters in the cramped and weightless space station. In this paper, we proposed a calibration-free multi-view vision system for astronaut performance capture, including two modules: (1) an alternating iterative optimization of the camera pose and human pose is implemented to calibrate the extrinsic camera parameters with detected 2D keypoints. (2) Scale factors are restricted by the limb length to recover the real-world scale and the shape parameters are refined for subsequent postural reconstruction. These two modules can provide effective and efficient motion capture in a weightless space station. Extensive experiments using public datasets and the ground verification test data demonstrated the accuracy of the estimated camera pose and the effectiveness of the reconstructed human pose.</description><subject>Accuracy</subject><subject>Astronaut performance</subject><subject>astronaut performance capture</subject><subject>Astronauts</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Discovery and exploration</subject><subject>extrinsic camera calibration</subject><subject>Human body</subject><subject>Human performance</subject><subject>human pose estimation</subject><subject>Kinematics</subject><subject>Modules</subject><subject>Moon</subject><subject>Motion capture</subject><subject>multi-view system</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Outer space</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Posture</subject><subject>Reconstruction</subject><subject>Self calibration</subject><subject>Sensors</subject><subject>Space exploration</subject><subject>Space missions</subject><subject>Space stations</subject><subject>Spacecraft modules</subject><subject>Vision systems</subject><subject>Workloads</subject><issn>2226-4310</issn><issn>2226-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkUtrGzEUhUVpIcHJD8huoOtJ9H4sjenDkNCQpN4KjXyVyoxHrqQh5N9HrksJVFrocvTdw5UOQlcEXzNm8I2DnMrBeSAYM0yN_oDOKaWy54zgj-_qM3RZyg63ZQjTWJyjzbK7m8ca-02El24TS0xT9_haKuy7kHK3LDWnyc21u0-lztmN3QP4NDV59vUIv8T6q3uEMfQrN8Yhu6N6gT4FNxa4_Hsu0M-vX55W3_vbH9_Wq-Vt7zkltR_IVgnNOSFSCgEDDRIggGN6YEYraZj0mivGuRa4vVQoKlxouPYeglFsgdYn321yO3vIce_yq00u2j9Cys_W5Rr9CJZRxrWWDAaveBCDM1smmVEcPFWmXSzQ55PXIaffM5Rqd2nOUxvfNoAIQTExjbo-Uc-umcYppJqdb3sL-9g-BkJs-lJxxiXhQrQGcmrwLaSSIfwbk2B7jM_-Fx97A0CDjXo</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Gan, Shuwei</creator><creator>Zhang, Xiaohu</creator><creator>Zhuge, Sheng</creator><creator>Ning, Chenghao</creator><creator>Zhong, Lijun</creator><creator>Li, You</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20230301</creationdate><title>A Multi-View Vision System for Astronaut Postural Reconstruction with Self-Calibration</title><author>Gan, Shuwei ; Zhang, Xiaohu ; Zhuge, Sheng ; Ning, Chenghao ; Zhong, Lijun ; Li, You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-b1d75844116655eb2f6eefea38b39876936c8473448503905725af4118ccef973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Astronaut performance</topic><topic>astronaut performance capture</topic><topic>Astronauts</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Discovery and exploration</topic><topic>extrinsic camera calibration</topic><topic>Human body</topic><topic>Human performance</topic><topic>human pose estimation</topic><topic>Kinematics</topic><topic>Modules</topic><topic>Moon</topic><topic>Motion capture</topic><topic>multi-view system</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Outer space</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Posture</topic><topic>Reconstruction</topic><topic>Self calibration</topic><topic>Sensors</topic><topic>Space exploration</topic><topic>Space missions</topic><topic>Space stations</topic><topic>Spacecraft modules</topic><topic>Vision systems</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Shuwei</creatorcontrib><creatorcontrib>Zhang, Xiaohu</creatorcontrib><creatorcontrib>Zhuge, Sheng</creatorcontrib><creatorcontrib>Ning, Chenghao</creatorcontrib><creatorcontrib>Zhong, Lijun</creatorcontrib><creatorcontrib>Li, You</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Aerospace</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Shuwei</au><au>Zhang, Xiaohu</au><au>Zhuge, Sheng</au><au>Ning, Chenghao</au><au>Zhong, Lijun</au><au>Li, You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-View Vision System for Astronaut Postural Reconstruction with Self-Calibration</atitle><jtitle>Aerospace</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>10</volume><issue>3</issue><spage>298</spage><pages>298-</pages><issn>2226-4310</issn><eissn>2226-4310</eissn><abstract>Space exploration missions involve significant participation from astronauts. Therefore, it is of great practical importance to assess the astronauts’ performance via various parameters in the cramped and weightless space station. In this paper, we proposed a calibration-free multi-view vision system for astronaut performance capture, including two modules: (1) an alternating iterative optimization of the camera pose and human pose is implemented to calibrate the extrinsic camera parameters with detected 2D keypoints. (2) Scale factors are restricted by the limb length to recover the real-world scale and the shape parameters are refined for subsequent postural reconstruction. These two modules can provide effective and efficient motion capture in a weightless space station. Extensive experiments using public datasets and the ground verification test data demonstrated the accuracy of the estimated camera pose and the effectiveness of the reconstructed human pose.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/aerospace10030298</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2226-4310 |
ispartof | Aerospace, 2023-03, Vol.10 (3), p.298 |
issn | 2226-4310 2226-4310 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_32348863ebc74f5ba9d363974ec27986 |
source | Publicly Available Content Database; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Astronaut performance astronaut performance capture Astronauts Calibration Cameras Discovery and exploration extrinsic camera calibration Human body Human performance human pose estimation Kinematics Modules Moon Motion capture multi-view system Neural networks Optimization Outer space Parameter estimation Parameters Posture Reconstruction Self calibration Sensors Space exploration Space missions Space stations Spacecraft modules Vision systems Workloads |
title | A Multi-View Vision System for Astronaut Postural Reconstruction with Self-Calibration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-View%20Vision%20System%20for%20Astronaut%20Postural%20Reconstruction%20with%20Self-Calibration&rft.jtitle=Aerospace&rft.au=Gan,%20Shuwei&rft.date=2023-03-01&rft.volume=10&rft.issue=3&rft.spage=298&rft.pages=298-&rft.issn=2226-4310&rft.eissn=2226-4310&rft_id=info:doi/10.3390/aerospace10030298&rft_dat=%3Cgale_doaj_%3EA743461455%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-b1d75844116655eb2f6eefea38b39876936c8473448503905725af4118ccef973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791552019&rft_id=info:pmid/&rft_galeid=A743461455&rfr_iscdi=true |