Loading…

Direct Synthesis of Mn3[Fe(CN)6]2·nH2O Nanosheets as Novel 2D Analog of Prussian Blue and Material for High-Performance Metal-Ion Batteries

Rechargeable metal-ion batteries (RMIBs) are prospective highly effective and low-cost devices for energy storage. Prussian blue analogues (PBAs) have become a subject of significant interest for commercial applications owing to their exceptional specific capacity and broad operational potential win...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2023-05, Vol.14 (5), p.1083
Main Authors: Lobinsky, Artem A., Kaneva, Maria V., Tenevich, Maxim I., Popkov, Vadim I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rechargeable metal-ion batteries (RMIBs) are prospective highly effective and low-cost devices for energy storage. Prussian blue analogues (PBAs) have become a subject of significant interest for commercial applications owing to their exceptional specific capacity and broad operational potential window as cathode materials for rechargeable metal-ion batteries. However, the limiting factors for its widespread use are its poor electrical conductivity and stability. The present study describes the direct and simple synthesis of 2D nanosheets of MnFCN (Mn3[Fe(CN)6]2·nH2O) on nickel foam (NF) via a successive ionic layer deposition (SILD) method, which provided more ion diffusion and electrochemical conductivity. MnFCN/NF exhibited exceptional cathode performance for RMIBs, delivering a high specific capacity of 1032 F/g at 1 A/g in an aqueous 1M NaOH electrolyte. Additionally, the specific capacitance reached the remarkable levels of 327.5 F/g at 1 A/g and 230 F/g at 0.1 A/g in 1M Na2SO4 and 1M ZnSO4 aqueous solutions, respectively.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi14051083