Loading…

scEvoNet: a gradient boosting-based method for prediction of cell state evolution

Exploring the function or the developmental history of cells in various organisms provides insights into a given cell type's core molecular characteristics and putative evolutionary mechanisms. Numerous computational methods now exist for analyzing single-cell data and identifying cell states....

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2023-03, Vol.24 (1), p.83-83, Article 83
Main Authors: Kotov, Aleksandr, Zinovyev, Andrei, Monsoro-Burq, Anne-Helene
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c548t-a1e2af61c4e739ab0e7d06f698f9a35779482bcdf12d5f0e726e5731413cd6523
container_end_page 83
container_issue 1
container_start_page 83
container_title BMC bioinformatics
container_volume 24
creator Kotov, Aleksandr
Zinovyev, Andrei
Monsoro-Burq, Anne-Helene
description Exploring the function or the developmental history of cells in various organisms provides insights into a given cell type's core molecular characteristics and putative evolutionary mechanisms. Numerous computational methods now exist for analyzing single-cell data and identifying cell states. These methods mostly rely on the expression of genes considered as markers for a given cell state. Yet, there is a lack of scRNA-seq computational tools to study the evolution of cell states, particularly how cell states change their molecular profiles. This can include novel gene activation or the novel deployment of programs already existing in other cell types, known as co-option. Here we present scEvoNet, a Python tool for predicting cell type evolution in cross-species or cancer-related scRNA-seq datasets. ScEvoNet builds the confusion matrix of cell states and a bipartite network connecting genes and cell states. It allows a user to obtain a set of genes shared by the characteristic signature of two cell states even between distantly-related datasets. These genes can be used as indicators of either evolutionary divergence or co-option occurring during organism or tumor evolution. Our results on cancer and developmental datasets indicate that scEvoNet is a helpful tool for the initial screening of such genes as well as for measuring cell state similarities. The scEvoNet package is implemented in Python and is freely available from https://github.com/monsoro/scEvoNet . Utilizing this framework and exploring the continuum of transcriptome states between developmental stages and species will help explain cell state dynamics.
doi_str_mv 10.1186/s12859-023-05213-3
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_324c9fc84fc34ba9b20a8d19207ebec5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A739844702</galeid><doaj_id>oai_doaj_org_article_324c9fc84fc34ba9b20a8d19207ebec5</doaj_id><sourcerecordid>A739844702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-a1e2af61c4e739ab0e7d06f698f9a35779482bcdf12d5f0e726e5731413cd6523</originalsourceid><addsrcrecordid>eNptkl1rFDEYhQdRbK3-AS9kwBu9mJqvmSReCKVUXSiKX9chk7yZZpmdbJPMov_eTLfWrkguEt4854QcTlU9x-gUY9G9SZiIVjaI0Aa1BNOGPqiOMeO4IRi1D--dj6onKa0Rwlyg9nF1RDvBJUHouPqSzMUufIL8ttb1ELX1MOW6DyFlPw1NrxPYegP5KtjahVhvI1hvsg9THVxtYBzrlHWGGnZhnJf50-qR02OCZ7f7SfXj_cX384_N5ecPq_Ozy8a0TORGYyDaddgw4FTqHgG3qHOdFE5q2nIumSC9sQ4T27pySzpoOcUMU2O7ltCTarX3tUGv1Tb6jY6_VNBe3QxCHJSO2ZsRFCXMSGcEc4ayXsueIC0sLglw6MG0xevd3ms79xuwpmQQ9Xhgengz-Ss1hJ2SUiKCFoNXtwYxXM-Qstr4tKSjJwhzUoQLRgXtZFfQl_-g6zDHqUS1UIIx3mH0lxp0-YCfXCjvmsVUnZW8FgwtGZz-hyrLwsabMIHzZX4geH0gKEyGn3nQc0pq9e3rIUv2rIkhpQjuLg-M1FJAtS-gKqy6KaCiRfTifpJ3kj-No78BHUfUAg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788447610</pqid></control><display><type>article</type><title>scEvoNet: a gradient boosting-based method for prediction of cell state evolution</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Kotov, Aleksandr ; Zinovyev, Andrei ; Monsoro-Burq, Anne-Helene</creator><creatorcontrib>Kotov, Aleksandr ; Zinovyev, Andrei ; Monsoro-Burq, Anne-Helene</creatorcontrib><description>Exploring the function or the developmental history of cells in various organisms provides insights into a given cell type's core molecular characteristics and putative evolutionary mechanisms. Numerous computational methods now exist for analyzing single-cell data and identifying cell states. These methods mostly rely on the expression of genes considered as markers for a given cell state. Yet, there is a lack of scRNA-seq computational tools to study the evolution of cell states, particularly how cell states change their molecular profiles. This can include novel gene activation or the novel deployment of programs already existing in other cell types, known as co-option. Here we present scEvoNet, a Python tool for predicting cell type evolution in cross-species or cancer-related scRNA-seq datasets. ScEvoNet builds the confusion matrix of cell states and a bipartite network connecting genes and cell states. It allows a user to obtain a set of genes shared by the characteristic signature of two cell states even between distantly-related datasets. These genes can be used as indicators of either evolutionary divergence or co-option occurring during organism or tumor evolution. Our results on cancer and developmental datasets indicate that scEvoNet is a helpful tool for the initial screening of such genes as well as for measuring cell state similarities. The scEvoNet package is implemented in Python and is freely available from https://github.com/monsoro/scEvoNet . Utilizing this framework and exploring the continuum of transcriptome states between developmental stages and species will help explain cell state dynamics.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-023-05213-3</identifier><identifier>PMID: 36879200</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Cancer ; Cell development (Biology) ; Cell research ; Cell states ; Cell types ; Cells ; Computational Biology ; Computer applications ; Datasets ; Developmental stages ; Divergence ; Evolution ; Gene expression ; Gene programs ; Genes ; Gradient boosting ; Ligands ; Machine learning ; Metastasis ; Molecular evolution ; Mutation ; Organisms ; Python (Programming language) ; scRNA-seq ; Single-Cell Gene Expression Analysis ; Software ; Sparsity ; Transcriptome ; Transcriptomes ; Tumors</subject><ispartof>BMC bioinformatics, 2023-03, Vol.24 (1), p.83-83, Article 83</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c548t-a1e2af61c4e739ab0e7d06f698f9a35779482bcdf12d5f0e726e5731413cd6523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990205/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2788447610?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36879200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotov, Aleksandr</creatorcontrib><creatorcontrib>Zinovyev, Andrei</creatorcontrib><creatorcontrib>Monsoro-Burq, Anne-Helene</creatorcontrib><title>scEvoNet: a gradient boosting-based method for prediction of cell state evolution</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Exploring the function or the developmental history of cells in various organisms provides insights into a given cell type's core molecular characteristics and putative evolutionary mechanisms. Numerous computational methods now exist for analyzing single-cell data and identifying cell states. These methods mostly rely on the expression of genes considered as markers for a given cell state. Yet, there is a lack of scRNA-seq computational tools to study the evolution of cell states, particularly how cell states change their molecular profiles. This can include novel gene activation or the novel deployment of programs already existing in other cell types, known as co-option. Here we present scEvoNet, a Python tool for predicting cell type evolution in cross-species or cancer-related scRNA-seq datasets. ScEvoNet builds the confusion matrix of cell states and a bipartite network connecting genes and cell states. It allows a user to obtain a set of genes shared by the characteristic signature of two cell states even between distantly-related datasets. These genes can be used as indicators of either evolutionary divergence or co-option occurring during organism or tumor evolution. Our results on cancer and developmental datasets indicate that scEvoNet is a helpful tool for the initial screening of such genes as well as for measuring cell state similarities. The scEvoNet package is implemented in Python and is freely available from https://github.com/monsoro/scEvoNet . Utilizing this framework and exploring the continuum of transcriptome states between developmental stages and species will help explain cell state dynamics.</description><subject>Algorithms</subject><subject>Cancer</subject><subject>Cell development (Biology)</subject><subject>Cell research</subject><subject>Cell states</subject><subject>Cell types</subject><subject>Cells</subject><subject>Computational Biology</subject><subject>Computer applications</subject><subject>Datasets</subject><subject>Developmental stages</subject><subject>Divergence</subject><subject>Evolution</subject><subject>Gene expression</subject><subject>Gene programs</subject><subject>Genes</subject><subject>Gradient boosting</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>Metastasis</subject><subject>Molecular evolution</subject><subject>Mutation</subject><subject>Organisms</subject><subject>Python (Programming language)</subject><subject>scRNA-seq</subject><subject>Single-Cell Gene Expression Analysis</subject><subject>Software</subject><subject>Sparsity</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>Tumors</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEYhQdRbK3-AS9kwBu9mJqvmSReCKVUXSiKX9chk7yZZpmdbJPMov_eTLfWrkguEt4854QcTlU9x-gUY9G9SZiIVjaI0Aa1BNOGPqiOMeO4IRi1D--dj6onKa0Rwlyg9nF1RDvBJUHouPqSzMUufIL8ttb1ELX1MOW6DyFlPw1NrxPYegP5KtjahVhvI1hvsg9THVxtYBzrlHWGGnZhnJf50-qR02OCZ7f7SfXj_cX384_N5ecPq_Ozy8a0TORGYyDaddgw4FTqHgG3qHOdFE5q2nIumSC9sQ4T27pySzpoOcUMU2O7ltCTarX3tUGv1Tb6jY6_VNBe3QxCHJSO2ZsRFCXMSGcEc4ayXsueIC0sLglw6MG0xevd3ms79xuwpmQQ9Xhgengz-Ss1hJ2SUiKCFoNXtwYxXM-Qstr4tKSjJwhzUoQLRgXtZFfQl_-g6zDHqUS1UIIx3mH0lxp0-YCfXCjvmsVUnZW8FgwtGZz-hyrLwsabMIHzZX4geH0gKEyGn3nQc0pq9e3rIUv2rIkhpQjuLg-M1FJAtS-gKqy6KaCiRfTifpJ3kj-No78BHUfUAg</recordid><startdate>20230306</startdate><enddate>20230306</enddate><creator>Kotov, Aleksandr</creator><creator>Zinovyev, Andrei</creator><creator>Monsoro-Burq, Anne-Helene</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230306</creationdate><title>scEvoNet: a gradient boosting-based method for prediction of cell state evolution</title><author>Kotov, Aleksandr ; Zinovyev, Andrei ; Monsoro-Burq, Anne-Helene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-a1e2af61c4e739ab0e7d06f698f9a35779482bcdf12d5f0e726e5731413cd6523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cancer</topic><topic>Cell development (Biology)</topic><topic>Cell research</topic><topic>Cell states</topic><topic>Cell types</topic><topic>Cells</topic><topic>Computational Biology</topic><topic>Computer applications</topic><topic>Datasets</topic><topic>Developmental stages</topic><topic>Divergence</topic><topic>Evolution</topic><topic>Gene expression</topic><topic>Gene programs</topic><topic>Genes</topic><topic>Gradient boosting</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>Metastasis</topic><topic>Molecular evolution</topic><topic>Mutation</topic><topic>Organisms</topic><topic>Python (Programming language)</topic><topic>scRNA-seq</topic><topic>Single-Cell Gene Expression Analysis</topic><topic>Software</topic><topic>Sparsity</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotov, Aleksandr</creatorcontrib><creatorcontrib>Zinovyev, Andrei</creatorcontrib><creatorcontrib>Monsoro-Burq, Anne-Helene</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotov, Aleksandr</au><au>Zinovyev, Andrei</au><au>Monsoro-Burq, Anne-Helene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>scEvoNet: a gradient boosting-based method for prediction of cell state evolution</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2023-03-06</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>83</spage><epage>83</epage><pages>83-83</pages><artnum>83</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Exploring the function or the developmental history of cells in various organisms provides insights into a given cell type's core molecular characteristics and putative evolutionary mechanisms. Numerous computational methods now exist for analyzing single-cell data and identifying cell states. These methods mostly rely on the expression of genes considered as markers for a given cell state. Yet, there is a lack of scRNA-seq computational tools to study the evolution of cell states, particularly how cell states change their molecular profiles. This can include novel gene activation or the novel deployment of programs already existing in other cell types, known as co-option. Here we present scEvoNet, a Python tool for predicting cell type evolution in cross-species or cancer-related scRNA-seq datasets. ScEvoNet builds the confusion matrix of cell states and a bipartite network connecting genes and cell states. It allows a user to obtain a set of genes shared by the characteristic signature of two cell states even between distantly-related datasets. These genes can be used as indicators of either evolutionary divergence or co-option occurring during organism or tumor evolution. Our results on cancer and developmental datasets indicate that scEvoNet is a helpful tool for the initial screening of such genes as well as for measuring cell state similarities. The scEvoNet package is implemented in Python and is freely available from https://github.com/monsoro/scEvoNet . Utilizing this framework and exploring the continuum of transcriptome states between developmental stages and species will help explain cell state dynamics.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>36879200</pmid><doi>10.1186/s12859-023-05213-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2023-03, Vol.24 (1), p.83-83, Article 83
issn 1471-2105
1471-2105
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_324c9fc84fc34ba9b20a8d19207ebec5
source ProQuest - Publicly Available Content Database; PubMed Central
subjects Algorithms
Cancer
Cell development (Biology)
Cell research
Cell states
Cell types
Cells
Computational Biology
Computer applications
Datasets
Developmental stages
Divergence
Evolution
Gene expression
Gene programs
Genes
Gradient boosting
Ligands
Machine learning
Metastasis
Molecular evolution
Mutation
Organisms
Python (Programming language)
scRNA-seq
Single-Cell Gene Expression Analysis
Software
Sparsity
Transcriptome
Transcriptomes
Tumors
title scEvoNet: a gradient boosting-based method for prediction of cell state evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=scEvoNet:%20a%20gradient%20boosting-based%20method%20for%20prediction%20of%20cell%20state%20evolution&rft.jtitle=BMC%20bioinformatics&rft.au=Kotov,%20Aleksandr&rft.date=2023-03-06&rft.volume=24&rft.issue=1&rft.spage=83&rft.epage=83&rft.pages=83-83&rft.artnum=83&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-023-05213-3&rft_dat=%3Cgale_doaj_%3EA739844702%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c548t-a1e2af61c4e739ab0e7d06f698f9a35779482bcdf12d5f0e726e5731413cd6523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2788447610&rft_id=info:pmid/36879200&rft_galeid=A739844702&rfr_iscdi=true