Loading…

Deep Learning-Based Path Planning Under Co-Safe Temporal Logic Specifications

This paper introduces an innovative deep learning framework for robotic path planning. This framework addresses two fundamental challenges: (1) integration of mission specifications defined through Linear Temporal Logic (LTL), and (2) enhancement of trajectory quality via cost function integration w...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.7704-7718
Main Authors: Lee, Kyoungho, Cho, Kyunghoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c338t-2717cf1c525b85442e2343e05adf02f7ee967dffbd092f74ea43d2a0aa5dff733
container_end_page 7718
container_issue
container_start_page 7704
container_title IEEE access
container_volume 12
creator Lee, Kyoungho
Cho, Kyunghoon
description This paper introduces an innovative deep learning framework for robotic path planning. This framework addresses two fundamental challenges: (1) integration of mission specifications defined through Linear Temporal Logic (LTL), and (2) enhancement of trajectory quality via cost function integration within the configuration space. The proposed method shows better efficacy compared to traditional sampling-based path planning methods in computational efficiency, due to its end-to-end neural network architecture. The framework functions in two key phases. Initially, using a Conditional Variational Autoencoder (CVAE), the proposed approach efficiently identifies and encodes optimal trajectory distributions. From these distributions, candidate control sequences are generated. Subsequently, a specialized neural network module selects and fine-tunes these sequences, ensuring compliance with the LTL specifications and achieving near-optimal solutions. Through rigorous simulation testing, we have validated the effectiveness of our method in producing low-cost trajectories that fulfill LTL mission requirements. Comparative analysis against existing deep learning-based path planning methods reveals our framework’s superior performance in both trajectory optimality and mission success rates.
doi_str_mv 10.1109/ACCESS.2024.3351893
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_32613d4641e64c20b5d30f953fce4d22</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_32613d4641e64c20b5d30f953fce4d22</doaj_id><sourcerecordid>2915721743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-2717cf1c525b85442e2343e05adf02f7ee967dffbd092f74ea43d2a0aa5dff733</originalsourceid><addsrcrecordid>eNpNkUFPwkAQhRujiQT5BV6aeC7u7uy29IgVlaRGEuC8GXZnsQS6dVsO_nuLEONcZuZl8t4kXxTdczbmnOWP06KYLZdjwYQcAyg-yeEqGgie5gkoSK__zbfRqG13rK9JL6lsEL0_EzVxSRjqqt4mT9iSjRfYfcaLPdYnLV7XlkJc-GSJjuIVHRofcB-XfluZeNmQqVxlsKt83d5FNw73LY0ufRitX2ar4i0pP17nxbRMDMCkS0TGM-O4UUJtJkpKQQIkEFNoHRMuI8rTzDq3sSzvV0kowQpkiKpXM4BhND_7Wo873YTqgOFbe6z0r-DDVmPoKrMnDSLlYGUqOaXSCLZRFpjLFThD0grRez2cvZrgv47Udnrnj6Hu39ci5yoTPJOnRDhfmeDbNpD7S-VMnzDoMwZ9wqAvGOAHllt5Iw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915721743</pqid></control><display><type>article</type><title>Deep Learning-Based Path Planning Under Co-Safe Temporal Logic Specifications</title><source>IEEE Xplore Open Access Journals</source><creator>Lee, Kyoungho ; Cho, Kyunghoon</creator><creatorcontrib>Lee, Kyoungho ; Cho, Kyunghoon</creatorcontrib><description>This paper introduces an innovative deep learning framework for robotic path planning. This framework addresses two fundamental challenges: (1) integration of mission specifications defined through Linear Temporal Logic (LTL), and (2) enhancement of trajectory quality via cost function integration within the configuration space. The proposed method shows better efficacy compared to traditional sampling-based path planning methods in computational efficiency, due to its end-to-end neural network architecture. The framework functions in two key phases. Initially, using a Conditional Variational Autoencoder (CVAE), the proposed approach efficiently identifies and encodes optimal trajectory distributions. From these distributions, candidate control sequences are generated. Subsequently, a specialized neural network module selects and fine-tunes these sequences, ensuring compliance with the LTL specifications and achieving near-optimal solutions. Through rigorous simulation testing, we have validated the effectiveness of our method in producing low-cost trajectories that fulfill LTL mission requirements. Comparative analysis against existing deep learning-based path planning methods reveals our framework’s superior performance in both trajectory optimality and mission success rates.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3351893</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Configuration space path planning ; Cost analysis ; Cost function ; Deep learning ; Deep learning-based control synthesis ; formal methods ; Machine learning ; mission-based path planning ; Neural networks ; Specifications ; Temporal logic ; Trajectory optimization</subject><ispartof>IEEE access, 2024, Vol.12, p.7704-7718</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-2717cf1c525b85442e2343e05adf02f7ee967dffbd092f74ea43d2a0aa5dff733</cites><orcidid>0000-0002-4679-6660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Lee, Kyoungho</creatorcontrib><creatorcontrib>Cho, Kyunghoon</creatorcontrib><title>Deep Learning-Based Path Planning Under Co-Safe Temporal Logic Specifications</title><title>IEEE access</title><description>This paper introduces an innovative deep learning framework for robotic path planning. This framework addresses two fundamental challenges: (1) integration of mission specifications defined through Linear Temporal Logic (LTL), and (2) enhancement of trajectory quality via cost function integration within the configuration space. The proposed method shows better efficacy compared to traditional sampling-based path planning methods in computational efficiency, due to its end-to-end neural network architecture. The framework functions in two key phases. Initially, using a Conditional Variational Autoencoder (CVAE), the proposed approach efficiently identifies and encodes optimal trajectory distributions. From these distributions, candidate control sequences are generated. Subsequently, a specialized neural network module selects and fine-tunes these sequences, ensuring compliance with the LTL specifications and achieving near-optimal solutions. Through rigorous simulation testing, we have validated the effectiveness of our method in producing low-cost trajectories that fulfill LTL mission requirements. Comparative analysis against existing deep learning-based path planning methods reveals our framework’s superior performance in both trajectory optimality and mission success rates.</description><subject>Configuration space path planning</subject><subject>Cost analysis</subject><subject>Cost function</subject><subject>Deep learning</subject><subject>Deep learning-based control synthesis</subject><subject>formal methods</subject><subject>Machine learning</subject><subject>mission-based path planning</subject><subject>Neural networks</subject><subject>Specifications</subject><subject>Temporal logic</subject><subject>Trajectory optimization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkUFPwkAQhRujiQT5BV6aeC7u7uy29IgVlaRGEuC8GXZnsQS6dVsO_nuLEONcZuZl8t4kXxTdczbmnOWP06KYLZdjwYQcAyg-yeEqGgie5gkoSK__zbfRqG13rK9JL6lsEL0_EzVxSRjqqt4mT9iSjRfYfcaLPdYnLV7XlkJc-GSJjuIVHRofcB-XfluZeNmQqVxlsKt83d5FNw73LY0ufRitX2ar4i0pP17nxbRMDMCkS0TGM-O4UUJtJkpKQQIkEFNoHRMuI8rTzDq3sSzvV0kowQpkiKpXM4BhND_7Wo873YTqgOFbe6z0r-DDVmPoKrMnDSLlYGUqOaXSCLZRFpjLFThD0grRez2cvZrgv47Udnrnj6Hu39ci5yoTPJOnRDhfmeDbNpD7S-VMnzDoMwZ9wqAvGOAHllt5Iw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lee, Kyoungho</creator><creator>Cho, Kyunghoon</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4679-6660</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Learning-Based Path Planning Under Co-Safe Temporal Logic Specifications</title><author>Lee, Kyoungho ; Cho, Kyunghoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-2717cf1c525b85442e2343e05adf02f7ee967dffbd092f74ea43d2a0aa5dff733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Configuration space path planning</topic><topic>Cost analysis</topic><topic>Cost function</topic><topic>Deep learning</topic><topic>Deep learning-based control synthesis</topic><topic>formal methods</topic><topic>Machine learning</topic><topic>mission-based path planning</topic><topic>Neural networks</topic><topic>Specifications</topic><topic>Temporal logic</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kyoungho</creatorcontrib><creatorcontrib>Cho, Kyunghoon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kyoungho</au><au>Cho, Kyunghoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Path Planning Under Co-Safe Temporal Logic Specifications</atitle><jtitle>IEEE access</jtitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>7704</spage><epage>7718</epage><pages>7704-7718</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><abstract>This paper introduces an innovative deep learning framework for robotic path planning. This framework addresses two fundamental challenges: (1) integration of mission specifications defined through Linear Temporal Logic (LTL), and (2) enhancement of trajectory quality via cost function integration within the configuration space. The proposed method shows better efficacy compared to traditional sampling-based path planning methods in computational efficiency, due to its end-to-end neural network architecture. The framework functions in two key phases. Initially, using a Conditional Variational Autoencoder (CVAE), the proposed approach efficiently identifies and encodes optimal trajectory distributions. From these distributions, candidate control sequences are generated. Subsequently, a specialized neural network module selects and fine-tunes these sequences, ensuring compliance with the LTL specifications and achieving near-optimal solutions. Through rigorous simulation testing, we have validated the effectiveness of our method in producing low-cost trajectories that fulfill LTL mission requirements. Comparative analysis against existing deep learning-based path planning methods reveals our framework’s superior performance in both trajectory optimality and mission success rates.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/ACCESS.2024.3351893</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4679-6660</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.7704-7718
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_32613d4641e64c20b5d30f953fce4d22
source IEEE Xplore Open Access Journals
subjects Configuration space path planning
Cost analysis
Cost function
Deep learning
Deep learning-based control synthesis
formal methods
Machine learning
mission-based path planning
Neural networks
Specifications
Temporal logic
Trajectory optimization
title Deep Learning-Based Path Planning Under Co-Safe Temporal Logic Specifications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Path%20Planning%20Under%20Co-Safe%20Temporal%20Logic%20Specifications&rft.jtitle=IEEE%20access&rft.au=Lee,%20Kyoungho&rft.date=2024&rft.volume=12&rft.spage=7704&rft.epage=7718&rft.pages=7704-7718&rft.issn=2169-3536&rft.eissn=2169-3536&rft_id=info:doi/10.1109/ACCESS.2024.3351893&rft_dat=%3Cproquest_doaj_%3E2915721743%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-2717cf1c525b85442e2343e05adf02f7ee967dffbd092f74ea43d2a0aa5dff733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2915721743&rft_id=info:pmid/&rfr_iscdi=true