Loading…
Deep Learning-Based Path Planning Under Co-Safe Temporal Logic Specifications
This paper introduces an innovative deep learning framework for robotic path planning. This framework addresses two fundamental challenges: (1) integration of mission specifications defined through Linear Temporal Logic (LTL), and (2) enhancement of trajectory quality via cost function integration w...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.7704-7718 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-2717cf1c525b85442e2343e05adf02f7ee967dffbd092f74ea43d2a0aa5dff733 |
container_end_page | 7718 |
container_issue | |
container_start_page | 7704 |
container_title | IEEE access |
container_volume | 12 |
creator | Lee, Kyoungho Cho, Kyunghoon |
description | This paper introduces an innovative deep learning framework for robotic path planning. This framework addresses two fundamental challenges: (1) integration of mission specifications defined through Linear Temporal Logic (LTL), and (2) enhancement of trajectory quality via cost function integration within the configuration space. The proposed method shows better efficacy compared to traditional sampling-based path planning methods in computational efficiency, due to its end-to-end neural network architecture. The framework functions in two key phases. Initially, using a Conditional Variational Autoencoder (CVAE), the proposed approach efficiently identifies and encodes optimal trajectory distributions. From these distributions, candidate control sequences are generated. Subsequently, a specialized neural network module selects and fine-tunes these sequences, ensuring compliance with the LTL specifications and achieving near-optimal solutions. Through rigorous simulation testing, we have validated the effectiveness of our method in producing low-cost trajectories that fulfill LTL mission requirements. Comparative analysis against existing deep learning-based path planning methods reveals our framework’s superior performance in both trajectory optimality and mission success rates. |
doi_str_mv | 10.1109/ACCESS.2024.3351893 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_32613d4641e64c20b5d30f953fce4d22</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_32613d4641e64c20b5d30f953fce4d22</doaj_id><sourcerecordid>2915721743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-2717cf1c525b85442e2343e05adf02f7ee967dffbd092f74ea43d2a0aa5dff733</originalsourceid><addsrcrecordid>eNpNkUFPwkAQhRujiQT5BV6aeC7u7uy29IgVlaRGEuC8GXZnsQS6dVsO_nuLEONcZuZl8t4kXxTdczbmnOWP06KYLZdjwYQcAyg-yeEqGgie5gkoSK__zbfRqG13rK9JL6lsEL0_EzVxSRjqqt4mT9iSjRfYfcaLPdYnLV7XlkJc-GSJjuIVHRofcB-XfluZeNmQqVxlsKt83d5FNw73LY0ufRitX2ar4i0pP17nxbRMDMCkS0TGM-O4UUJtJkpKQQIkEFNoHRMuI8rTzDq3sSzvV0kowQpkiKpXM4BhND_7Wo873YTqgOFbe6z0r-DDVmPoKrMnDSLlYGUqOaXSCLZRFpjLFThD0grRez2cvZrgv47Udnrnj6Hu39ci5yoTPJOnRDhfmeDbNpD7S-VMnzDoMwZ9wqAvGOAHllt5Iw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915721743</pqid></control><display><type>article</type><title>Deep Learning-Based Path Planning Under Co-Safe Temporal Logic Specifications</title><source>IEEE Xplore Open Access Journals</source><creator>Lee, Kyoungho ; Cho, Kyunghoon</creator><creatorcontrib>Lee, Kyoungho ; Cho, Kyunghoon</creatorcontrib><description>This paper introduces an innovative deep learning framework for robotic path planning. This framework addresses two fundamental challenges: (1) integration of mission specifications defined through Linear Temporal Logic (LTL), and (2) enhancement of trajectory quality via cost function integration within the configuration space. The proposed method shows better efficacy compared to traditional sampling-based path planning methods in computational efficiency, due to its end-to-end neural network architecture. The framework functions in two key phases. Initially, using a Conditional Variational Autoencoder (CVAE), the proposed approach efficiently identifies and encodes optimal trajectory distributions. From these distributions, candidate control sequences are generated. Subsequently, a specialized neural network module selects and fine-tunes these sequences, ensuring compliance with the LTL specifications and achieving near-optimal solutions. Through rigorous simulation testing, we have validated the effectiveness of our method in producing low-cost trajectories that fulfill LTL mission requirements. Comparative analysis against existing deep learning-based path planning methods reveals our framework’s superior performance in both trajectory optimality and mission success rates.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3351893</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Configuration space path planning ; Cost analysis ; Cost function ; Deep learning ; Deep learning-based control synthesis ; formal methods ; Machine learning ; mission-based path planning ; Neural networks ; Specifications ; Temporal logic ; Trajectory optimization</subject><ispartof>IEEE access, 2024, Vol.12, p.7704-7718</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-2717cf1c525b85442e2343e05adf02f7ee967dffbd092f74ea43d2a0aa5dff733</cites><orcidid>0000-0002-4679-6660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Lee, Kyoungho</creatorcontrib><creatorcontrib>Cho, Kyunghoon</creatorcontrib><title>Deep Learning-Based Path Planning Under Co-Safe Temporal Logic Specifications</title><title>IEEE access</title><description>This paper introduces an innovative deep learning framework for robotic path planning. This framework addresses two fundamental challenges: (1) integration of mission specifications defined through Linear Temporal Logic (LTL), and (2) enhancement of trajectory quality via cost function integration within the configuration space. The proposed method shows better efficacy compared to traditional sampling-based path planning methods in computational efficiency, due to its end-to-end neural network architecture. The framework functions in two key phases. Initially, using a Conditional Variational Autoencoder (CVAE), the proposed approach efficiently identifies and encodes optimal trajectory distributions. From these distributions, candidate control sequences are generated. Subsequently, a specialized neural network module selects and fine-tunes these sequences, ensuring compliance with the LTL specifications and achieving near-optimal solutions. Through rigorous simulation testing, we have validated the effectiveness of our method in producing low-cost trajectories that fulfill LTL mission requirements. Comparative analysis against existing deep learning-based path planning methods reveals our framework’s superior performance in both trajectory optimality and mission success rates.</description><subject>Configuration space path planning</subject><subject>Cost analysis</subject><subject>Cost function</subject><subject>Deep learning</subject><subject>Deep learning-based control synthesis</subject><subject>formal methods</subject><subject>Machine learning</subject><subject>mission-based path planning</subject><subject>Neural networks</subject><subject>Specifications</subject><subject>Temporal logic</subject><subject>Trajectory optimization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkUFPwkAQhRujiQT5BV6aeC7u7uy29IgVlaRGEuC8GXZnsQS6dVsO_nuLEONcZuZl8t4kXxTdczbmnOWP06KYLZdjwYQcAyg-yeEqGgie5gkoSK__zbfRqG13rK9JL6lsEL0_EzVxSRjqqt4mT9iSjRfYfcaLPdYnLV7XlkJc-GSJjuIVHRofcB-XfluZeNmQqVxlsKt83d5FNw73LY0ufRitX2ar4i0pP17nxbRMDMCkS0TGM-O4UUJtJkpKQQIkEFNoHRMuI8rTzDq3sSzvV0kowQpkiKpXM4BhND_7Wo873YTqgOFbe6z0r-DDVmPoKrMnDSLlYGUqOaXSCLZRFpjLFThD0grRez2cvZrgv47Udnrnj6Hu39ci5yoTPJOnRDhfmeDbNpD7S-VMnzDoMwZ9wqAvGOAHllt5Iw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lee, Kyoungho</creator><creator>Cho, Kyunghoon</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4679-6660</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Learning-Based Path Planning Under Co-Safe Temporal Logic Specifications</title><author>Lee, Kyoungho ; Cho, Kyunghoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-2717cf1c525b85442e2343e05adf02f7ee967dffbd092f74ea43d2a0aa5dff733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Configuration space path planning</topic><topic>Cost analysis</topic><topic>Cost function</topic><topic>Deep learning</topic><topic>Deep learning-based control synthesis</topic><topic>formal methods</topic><topic>Machine learning</topic><topic>mission-based path planning</topic><topic>Neural networks</topic><topic>Specifications</topic><topic>Temporal logic</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kyoungho</creatorcontrib><creatorcontrib>Cho, Kyunghoon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kyoungho</au><au>Cho, Kyunghoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Path Planning Under Co-Safe Temporal Logic Specifications</atitle><jtitle>IEEE access</jtitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>7704</spage><epage>7718</epage><pages>7704-7718</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><abstract>This paper introduces an innovative deep learning framework for robotic path planning. This framework addresses two fundamental challenges: (1) integration of mission specifications defined through Linear Temporal Logic (LTL), and (2) enhancement of trajectory quality via cost function integration within the configuration space. The proposed method shows better efficacy compared to traditional sampling-based path planning methods in computational efficiency, due to its end-to-end neural network architecture. The framework functions in two key phases. Initially, using a Conditional Variational Autoencoder (CVAE), the proposed approach efficiently identifies and encodes optimal trajectory distributions. From these distributions, candidate control sequences are generated. Subsequently, a specialized neural network module selects and fine-tunes these sequences, ensuring compliance with the LTL specifications and achieving near-optimal solutions. Through rigorous simulation testing, we have validated the effectiveness of our method in producing low-cost trajectories that fulfill LTL mission requirements. Comparative analysis against existing deep learning-based path planning methods reveals our framework’s superior performance in both trajectory optimality and mission success rates.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/ACCESS.2024.3351893</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4679-6660</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.7704-7718 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_32613d4641e64c20b5d30f953fce4d22 |
source | IEEE Xplore Open Access Journals |
subjects | Configuration space path planning Cost analysis Cost function Deep learning Deep learning-based control synthesis formal methods Machine learning mission-based path planning Neural networks Specifications Temporal logic Trajectory optimization |
title | Deep Learning-Based Path Planning Under Co-Safe Temporal Logic Specifications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Path%20Planning%20Under%20Co-Safe%20Temporal%20Logic%20Specifications&rft.jtitle=IEEE%20access&rft.au=Lee,%20Kyoungho&rft.date=2024&rft.volume=12&rft.spage=7704&rft.epage=7718&rft.pages=7704-7718&rft.issn=2169-3536&rft.eissn=2169-3536&rft_id=info:doi/10.1109/ACCESS.2024.3351893&rft_dat=%3Cproquest_doaj_%3E2915721743%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-2717cf1c525b85442e2343e05adf02f7ee967dffbd092f74ea43d2a0aa5dff733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2915721743&rft_id=info:pmid/&rfr_iscdi=true |