Loading…
Deep Neural Network and Evolved Optimization Algorithm for Damage Assessment in a Truss Bridge
In Structural Health Monitoring (SHM) of bridges, accurately assessing damage is critical to maintaining the safety and integrity of a structure. One of the primary challenges in damage assessment is the precise localization and quantification of defects, which is essential for making timely mainten...
Saved in:
Published in: | Mathematics (Basel) 2024-08, Vol.12 (15), p.2300 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-9486cef99258ad4b622c77f76d8df87250b22fe139dc6b37c42fb8d6580abba13 |
container_end_page | |
container_issue | 15 |
container_start_page | 2300 |
container_title | Mathematics (Basel) |
container_volume | 12 |
creator | Nguyen-Ngoc, Lan Nguyen-Huu, Quyet De Roeck, Guido Bui-Tien, Thanh Abdel-Wahab, Magd |
description | In Structural Health Monitoring (SHM) of bridges, accurately assessing damage is critical to maintaining the safety and integrity of a structure. One of the primary challenges in damage assessment is the precise localization and quantification of defects, which is essential for making timely maintenance decisions and reducing the risk of structural failures. This paper introduces a novel damage detection method for SHM of a truss bridge by coupling a Deep Neural Network (DNN) model with an evolved Artificial Rabbit Optimization (EVARO) algorithm. The integration of DNN with the stochastic search capability of the EVARO algorithm helps to avoid local minima, thereby ensuring more accurate and reliable results. Additionally, the optimization algorithm’s effectiveness is further enhanced by incorporating evolving predator features and the Cauchy motion search mechanism. The proposed method is first validated using various data benchmark problems, demonstrating its effectiveness compared to other well-known algorithms. Secondly, a case study involving the Chuong Duong truss bridge under different simulated damage scenarios further confirms the superiority of the proposed method in both localizing and quantifying damages. |
doi_str_mv | 10.3390/math12152300 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3270efc04cbe463ab50b0b1a8f2b914c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804514656</galeid><doaj_id>oai_doaj_org_article_3270efc04cbe463ab50b0b1a8f2b914c</doaj_id><sourcerecordid>A804514656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9486cef99258ad4b622c77f76d8df87250b22fe139dc6b37c42fb8d6580abba13</originalsourceid><addsrcrecordid>eNpNkUtvFDEMgEcIJKrSGz8gEle25DUzyXFpC1Sq6KVciZzEmWaZmSxJthX8elIWodoHW358tuyue8vouRCaflig3jPOei4ofdGdcM7HzdgSL5_5r7uzUna0iWZCSX3Sfb9E3JOveMgwN1MfU_5BYPXk6iHND-jJ7b7GJf6GGtNKtvOUcqz3Cwkpk0tYYEKyLQVLWXCtJK4EyF0-lEI-5ugnfNO9CjAXPPtnT7tvn67uLr5sbm4_X19sbzaOa1E3WqrBYdCa9wq8tAPnbhzDOHjlgxp5Ty3nAZnQ3g1WjE7yYJUfekXBWmDitLs-cn2CndnnuED-ZRJE8zeQ8mQg1-hmNIKPFIOj0lmUgwDb4NQyUIFbzaRrrHdH1j6nnwcs1ezSIa9tfSOobpdTUjxNPD9WTdCgcQ2pZnBNPS7RpRVDbPGtorJncuiH1vD-2OByKiVj-L8mo-bpg-b5B8UfnA2NnA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090918431</pqid></control><display><type>article</type><title>Deep Neural Network and Evolved Optimization Algorithm for Damage Assessment in a Truss Bridge</title><source>Publicly Available Content Database</source><creator>Nguyen-Ngoc, Lan ; Nguyen-Huu, Quyet ; De Roeck, Guido ; Bui-Tien, Thanh ; Abdel-Wahab, Magd</creator><creatorcontrib>Nguyen-Ngoc, Lan ; Nguyen-Huu, Quyet ; De Roeck, Guido ; Bui-Tien, Thanh ; Abdel-Wahab, Magd</creatorcontrib><description>In Structural Health Monitoring (SHM) of bridges, accurately assessing damage is critical to maintaining the safety and integrity of a structure. One of the primary challenges in damage assessment is the precise localization and quantification of defects, which is essential for making timely maintenance decisions and reducing the risk of structural failures. This paper introduces a novel damage detection method for SHM of a truss bridge by coupling a Deep Neural Network (DNN) model with an evolved Artificial Rabbit Optimization (EVARO) algorithm. The integration of DNN with the stochastic search capability of the EVARO algorithm helps to avoid local minima, thereby ensuring more accurate and reliable results. Additionally, the optimization algorithm’s effectiveness is further enhanced by incorporating evolving predator features and the Cauchy motion search mechanism. The proposed method is first validated using various data benchmark problems, demonstrating its effectiveness compared to other well-known algorithms. Secondly, a case study involving the Chuong Duong truss bridge under different simulated damage scenarios further confirms the superiority of the proposed method in both localizing and quantifying damages.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math12152300</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Artificial neural networks ; Bridge failure ; Bridge maintenance ; Bridges ; Case studies ; Civil engineering ; Damage assessment ; Damage detection ; Damage localization ; Effectiveness ; machine learning ; Neural networks ; Optimization ; optimization algorithm ; Optimization algorithms ; Scheduling ; Sensors ; Structural failure ; Structural health monitoring ; truss bridge ; Truss bridges</subject><ispartof>Mathematics (Basel), 2024-08, Vol.12 (15), p.2300</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-9486cef99258ad4b622c77f76d8df87250b22fe139dc6b37c42fb8d6580abba13</cites><orcidid>0000-0001-7186-4509 ; 0000-0002-4001-9246 ; 0000-0002-3610-865X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090918431/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090918431?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Nguyen-Ngoc, Lan</creatorcontrib><creatorcontrib>Nguyen-Huu, Quyet</creatorcontrib><creatorcontrib>De Roeck, Guido</creatorcontrib><creatorcontrib>Bui-Tien, Thanh</creatorcontrib><creatorcontrib>Abdel-Wahab, Magd</creatorcontrib><title>Deep Neural Network and Evolved Optimization Algorithm for Damage Assessment in a Truss Bridge</title><title>Mathematics (Basel)</title><description>In Structural Health Monitoring (SHM) of bridges, accurately assessing damage is critical to maintaining the safety and integrity of a structure. One of the primary challenges in damage assessment is the precise localization and quantification of defects, which is essential for making timely maintenance decisions and reducing the risk of structural failures. This paper introduces a novel damage detection method for SHM of a truss bridge by coupling a Deep Neural Network (DNN) model with an evolved Artificial Rabbit Optimization (EVARO) algorithm. The integration of DNN with the stochastic search capability of the EVARO algorithm helps to avoid local minima, thereby ensuring more accurate and reliable results. Additionally, the optimization algorithm’s effectiveness is further enhanced by incorporating evolving predator features and the Cauchy motion search mechanism. The proposed method is first validated using various data benchmark problems, demonstrating its effectiveness compared to other well-known algorithms. Secondly, a case study involving the Chuong Duong truss bridge under different simulated damage scenarios further confirms the superiority of the proposed method in both localizing and quantifying damages.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Bridge failure</subject><subject>Bridge maintenance</subject><subject>Bridges</subject><subject>Case studies</subject><subject>Civil engineering</subject><subject>Damage assessment</subject><subject>Damage detection</subject><subject>Damage localization</subject><subject>Effectiveness</subject><subject>machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>optimization algorithm</subject><subject>Optimization algorithms</subject><subject>Scheduling</subject><subject>Sensors</subject><subject>Structural failure</subject><subject>Structural health monitoring</subject><subject>truss bridge</subject><subject>Truss bridges</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtvFDEMgEcIJKrSGz8gEle25DUzyXFpC1Sq6KVciZzEmWaZmSxJthX8elIWodoHW358tuyue8vouRCaflig3jPOei4ofdGdcM7HzdgSL5_5r7uzUna0iWZCSX3Sfb9E3JOveMgwN1MfU_5BYPXk6iHND-jJ7b7GJf6GGtNKtvOUcqz3Cwkpk0tYYEKyLQVLWXCtJK4EyF0-lEI-5ugnfNO9CjAXPPtnT7tvn67uLr5sbm4_X19sbzaOa1E3WqrBYdCa9wq8tAPnbhzDOHjlgxp5Ty3nAZnQ3g1WjE7yYJUfekXBWmDitLs-cn2CndnnuED-ZRJE8zeQ8mQg1-hmNIKPFIOj0lmUgwDb4NQyUIFbzaRrrHdH1j6nnwcs1ezSIa9tfSOobpdTUjxNPD9WTdCgcQ2pZnBNPS7RpRVDbPGtorJncuiH1vD-2OByKiVj-L8mo-bpg-b5B8UfnA2NnA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Nguyen-Ngoc, Lan</creator><creator>Nguyen-Huu, Quyet</creator><creator>De Roeck, Guido</creator><creator>Bui-Tien, Thanh</creator><creator>Abdel-Wahab, Magd</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7186-4509</orcidid><orcidid>https://orcid.org/0000-0002-4001-9246</orcidid><orcidid>https://orcid.org/0000-0002-3610-865X</orcidid></search><sort><creationdate>20240801</creationdate><title>Deep Neural Network and Evolved Optimization Algorithm for Damage Assessment in a Truss Bridge</title><author>Nguyen-Ngoc, Lan ; Nguyen-Huu, Quyet ; De Roeck, Guido ; Bui-Tien, Thanh ; Abdel-Wahab, Magd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9486cef99258ad4b622c77f76d8df87250b22fe139dc6b37c42fb8d6580abba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Bridge failure</topic><topic>Bridge maintenance</topic><topic>Bridges</topic><topic>Case studies</topic><topic>Civil engineering</topic><topic>Damage assessment</topic><topic>Damage detection</topic><topic>Damage localization</topic><topic>Effectiveness</topic><topic>machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>optimization algorithm</topic><topic>Optimization algorithms</topic><topic>Scheduling</topic><topic>Sensors</topic><topic>Structural failure</topic><topic>Structural health monitoring</topic><topic>truss bridge</topic><topic>Truss bridges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen-Ngoc, Lan</creatorcontrib><creatorcontrib>Nguyen-Huu, Quyet</creatorcontrib><creatorcontrib>De Roeck, Guido</creatorcontrib><creatorcontrib>Bui-Tien, Thanh</creatorcontrib><creatorcontrib>Abdel-Wahab, Magd</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen-Ngoc, Lan</au><au>Nguyen-Huu, Quyet</au><au>De Roeck, Guido</au><au>Bui-Tien, Thanh</au><au>Abdel-Wahab, Magd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Network and Evolved Optimization Algorithm for Damage Assessment in a Truss Bridge</atitle><jtitle>Mathematics (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>12</volume><issue>15</issue><spage>2300</spage><pages>2300-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>In Structural Health Monitoring (SHM) of bridges, accurately assessing damage is critical to maintaining the safety and integrity of a structure. One of the primary challenges in damage assessment is the precise localization and quantification of defects, which is essential for making timely maintenance decisions and reducing the risk of structural failures. This paper introduces a novel damage detection method for SHM of a truss bridge by coupling a Deep Neural Network (DNN) model with an evolved Artificial Rabbit Optimization (EVARO) algorithm. The integration of DNN with the stochastic search capability of the EVARO algorithm helps to avoid local minima, thereby ensuring more accurate and reliable results. Additionally, the optimization algorithm’s effectiveness is further enhanced by incorporating evolving predator features and the Cauchy motion search mechanism. The proposed method is first validated using various data benchmark problems, demonstrating its effectiveness compared to other well-known algorithms. Secondly, a case study involving the Chuong Duong truss bridge under different simulated damage scenarios further confirms the superiority of the proposed method in both localizing and quantifying damages.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math12152300</doi><orcidid>https://orcid.org/0000-0001-7186-4509</orcidid><orcidid>https://orcid.org/0000-0002-4001-9246</orcidid><orcidid>https://orcid.org/0000-0002-3610-865X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2024-08, Vol.12 (15), p.2300 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3270efc04cbe463ab50b0b1a8f2b914c |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms Analysis Artificial neural networks Bridge failure Bridge maintenance Bridges Case studies Civil engineering Damage assessment Damage detection Damage localization Effectiveness machine learning Neural networks Optimization optimization algorithm Optimization algorithms Scheduling Sensors Structural failure Structural health monitoring truss bridge Truss bridges |
title | Deep Neural Network and Evolved Optimization Algorithm for Damage Assessment in a Truss Bridge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Network%20and%20Evolved%20Optimization%20Algorithm%20for%20Damage%20Assessment%20in%20a%20Truss%20Bridge&rft.jtitle=Mathematics%20(Basel)&rft.au=Nguyen-Ngoc,%20Lan&rft.date=2024-08-01&rft.volume=12&rft.issue=15&rft.spage=2300&rft.pages=2300-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math12152300&rft_dat=%3Cgale_doaj_%3EA804514656%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-9486cef99258ad4b622c77f76d8df87250b22fe139dc6b37c42fb8d6580abba13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090918431&rft_id=info:pmid/&rft_galeid=A804514656&rfr_iscdi=true |