Loading…

Deep Neural Network and Evolved Optimization Algorithm for Damage Assessment in a Truss Bridge

In Structural Health Monitoring (SHM) of bridges, accurately assessing damage is critical to maintaining the safety and integrity of a structure. One of the primary challenges in damage assessment is the precise localization and quantification of defects, which is essential for making timely mainten...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2024-08, Vol.12 (15), p.2300
Main Authors: Nguyen-Ngoc, Lan, Nguyen-Huu, Quyet, De Roeck, Guido, Bui-Tien, Thanh, Abdel-Wahab, Magd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c293t-9486cef99258ad4b622c77f76d8df87250b22fe139dc6b37c42fb8d6580abba13
container_end_page
container_issue 15
container_start_page 2300
container_title Mathematics (Basel)
container_volume 12
creator Nguyen-Ngoc, Lan
Nguyen-Huu, Quyet
De Roeck, Guido
Bui-Tien, Thanh
Abdel-Wahab, Magd
description In Structural Health Monitoring (SHM) of bridges, accurately assessing damage is critical to maintaining the safety and integrity of a structure. One of the primary challenges in damage assessment is the precise localization and quantification of defects, which is essential for making timely maintenance decisions and reducing the risk of structural failures. This paper introduces a novel damage detection method for SHM of a truss bridge by coupling a Deep Neural Network (DNN) model with an evolved Artificial Rabbit Optimization (EVARO) algorithm. The integration of DNN with the stochastic search capability of the EVARO algorithm helps to avoid local minima, thereby ensuring more accurate and reliable results. Additionally, the optimization algorithm’s effectiveness is further enhanced by incorporating evolving predator features and the Cauchy motion search mechanism. The proposed method is first validated using various data benchmark problems, demonstrating its effectiveness compared to other well-known algorithms. Secondly, a case study involving the Chuong Duong truss bridge under different simulated damage scenarios further confirms the superiority of the proposed method in both localizing and quantifying damages.
doi_str_mv 10.3390/math12152300
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3270efc04cbe463ab50b0b1a8f2b914c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804514656</galeid><doaj_id>oai_doaj_org_article_3270efc04cbe463ab50b0b1a8f2b914c</doaj_id><sourcerecordid>A804514656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9486cef99258ad4b622c77f76d8df87250b22fe139dc6b37c42fb8d6580abba13</originalsourceid><addsrcrecordid>eNpNkUtvFDEMgEcIJKrSGz8gEle25DUzyXFpC1Sq6KVciZzEmWaZmSxJthX8elIWodoHW358tuyue8vouRCaflig3jPOei4ofdGdcM7HzdgSL5_5r7uzUna0iWZCSX3Sfb9E3JOveMgwN1MfU_5BYPXk6iHND-jJ7b7GJf6GGtNKtvOUcqz3Cwkpk0tYYEKyLQVLWXCtJK4EyF0-lEI-5ugnfNO9CjAXPPtnT7tvn67uLr5sbm4_X19sbzaOa1E3WqrBYdCa9wq8tAPnbhzDOHjlgxp5Ty3nAZnQ3g1WjE7yYJUfekXBWmDitLs-cn2CndnnuED-ZRJE8zeQ8mQg1-hmNIKPFIOj0lmUgwDb4NQyUIFbzaRrrHdH1j6nnwcs1ezSIa9tfSOobpdTUjxNPD9WTdCgcQ2pZnBNPS7RpRVDbPGtorJncuiH1vD-2OByKiVj-L8mo-bpg-b5B8UfnA2NnA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090918431</pqid></control><display><type>article</type><title>Deep Neural Network and Evolved Optimization Algorithm for Damage Assessment in a Truss Bridge</title><source>Publicly Available Content Database</source><creator>Nguyen-Ngoc, Lan ; Nguyen-Huu, Quyet ; De Roeck, Guido ; Bui-Tien, Thanh ; Abdel-Wahab, Magd</creator><creatorcontrib>Nguyen-Ngoc, Lan ; Nguyen-Huu, Quyet ; De Roeck, Guido ; Bui-Tien, Thanh ; Abdel-Wahab, Magd</creatorcontrib><description>In Structural Health Monitoring (SHM) of bridges, accurately assessing damage is critical to maintaining the safety and integrity of a structure. One of the primary challenges in damage assessment is the precise localization and quantification of defects, which is essential for making timely maintenance decisions and reducing the risk of structural failures. This paper introduces a novel damage detection method for SHM of a truss bridge by coupling a Deep Neural Network (DNN) model with an evolved Artificial Rabbit Optimization (EVARO) algorithm. The integration of DNN with the stochastic search capability of the EVARO algorithm helps to avoid local minima, thereby ensuring more accurate and reliable results. Additionally, the optimization algorithm’s effectiveness is further enhanced by incorporating evolving predator features and the Cauchy motion search mechanism. The proposed method is first validated using various data benchmark problems, demonstrating its effectiveness compared to other well-known algorithms. Secondly, a case study involving the Chuong Duong truss bridge under different simulated damage scenarios further confirms the superiority of the proposed method in both localizing and quantifying damages.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math12152300</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Artificial neural networks ; Bridge failure ; Bridge maintenance ; Bridges ; Case studies ; Civil engineering ; Damage assessment ; Damage detection ; Damage localization ; Effectiveness ; machine learning ; Neural networks ; Optimization ; optimization algorithm ; Optimization algorithms ; Scheduling ; Sensors ; Structural failure ; Structural health monitoring ; truss bridge ; Truss bridges</subject><ispartof>Mathematics (Basel), 2024-08, Vol.12 (15), p.2300</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-9486cef99258ad4b622c77f76d8df87250b22fe139dc6b37c42fb8d6580abba13</cites><orcidid>0000-0001-7186-4509 ; 0000-0002-4001-9246 ; 0000-0002-3610-865X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090918431/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090918431?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Nguyen-Ngoc, Lan</creatorcontrib><creatorcontrib>Nguyen-Huu, Quyet</creatorcontrib><creatorcontrib>De Roeck, Guido</creatorcontrib><creatorcontrib>Bui-Tien, Thanh</creatorcontrib><creatorcontrib>Abdel-Wahab, Magd</creatorcontrib><title>Deep Neural Network and Evolved Optimization Algorithm for Damage Assessment in a Truss Bridge</title><title>Mathematics (Basel)</title><description>In Structural Health Monitoring (SHM) of bridges, accurately assessing damage is critical to maintaining the safety and integrity of a structure. One of the primary challenges in damage assessment is the precise localization and quantification of defects, which is essential for making timely maintenance decisions and reducing the risk of structural failures. This paper introduces a novel damage detection method for SHM of a truss bridge by coupling a Deep Neural Network (DNN) model with an evolved Artificial Rabbit Optimization (EVARO) algorithm. The integration of DNN with the stochastic search capability of the EVARO algorithm helps to avoid local minima, thereby ensuring more accurate and reliable results. Additionally, the optimization algorithm’s effectiveness is further enhanced by incorporating evolving predator features and the Cauchy motion search mechanism. The proposed method is first validated using various data benchmark problems, demonstrating its effectiveness compared to other well-known algorithms. Secondly, a case study involving the Chuong Duong truss bridge under different simulated damage scenarios further confirms the superiority of the proposed method in both localizing and quantifying damages.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Bridge failure</subject><subject>Bridge maintenance</subject><subject>Bridges</subject><subject>Case studies</subject><subject>Civil engineering</subject><subject>Damage assessment</subject><subject>Damage detection</subject><subject>Damage localization</subject><subject>Effectiveness</subject><subject>machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>optimization algorithm</subject><subject>Optimization algorithms</subject><subject>Scheduling</subject><subject>Sensors</subject><subject>Structural failure</subject><subject>Structural health monitoring</subject><subject>truss bridge</subject><subject>Truss bridges</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtvFDEMgEcIJKrSGz8gEle25DUzyXFpC1Sq6KVciZzEmWaZmSxJthX8elIWodoHW358tuyue8vouRCaflig3jPOei4ofdGdcM7HzdgSL5_5r7uzUna0iWZCSX3Sfb9E3JOveMgwN1MfU_5BYPXk6iHND-jJ7b7GJf6GGtNKtvOUcqz3Cwkpk0tYYEKyLQVLWXCtJK4EyF0-lEI-5ugnfNO9CjAXPPtnT7tvn67uLr5sbm4_X19sbzaOa1E3WqrBYdCa9wq8tAPnbhzDOHjlgxp5Ty3nAZnQ3g1WjE7yYJUfekXBWmDitLs-cn2CndnnuED-ZRJE8zeQ8mQg1-hmNIKPFIOj0lmUgwDb4NQyUIFbzaRrrHdH1j6nnwcs1ezSIa9tfSOobpdTUjxNPD9WTdCgcQ2pZnBNPS7RpRVDbPGtorJncuiH1vD-2OByKiVj-L8mo-bpg-b5B8UfnA2NnA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Nguyen-Ngoc, Lan</creator><creator>Nguyen-Huu, Quyet</creator><creator>De Roeck, Guido</creator><creator>Bui-Tien, Thanh</creator><creator>Abdel-Wahab, Magd</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7186-4509</orcidid><orcidid>https://orcid.org/0000-0002-4001-9246</orcidid><orcidid>https://orcid.org/0000-0002-3610-865X</orcidid></search><sort><creationdate>20240801</creationdate><title>Deep Neural Network and Evolved Optimization Algorithm for Damage Assessment in a Truss Bridge</title><author>Nguyen-Ngoc, Lan ; Nguyen-Huu, Quyet ; De Roeck, Guido ; Bui-Tien, Thanh ; Abdel-Wahab, Magd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9486cef99258ad4b622c77f76d8df87250b22fe139dc6b37c42fb8d6580abba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Bridge failure</topic><topic>Bridge maintenance</topic><topic>Bridges</topic><topic>Case studies</topic><topic>Civil engineering</topic><topic>Damage assessment</topic><topic>Damage detection</topic><topic>Damage localization</topic><topic>Effectiveness</topic><topic>machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>optimization algorithm</topic><topic>Optimization algorithms</topic><topic>Scheduling</topic><topic>Sensors</topic><topic>Structural failure</topic><topic>Structural health monitoring</topic><topic>truss bridge</topic><topic>Truss bridges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen-Ngoc, Lan</creatorcontrib><creatorcontrib>Nguyen-Huu, Quyet</creatorcontrib><creatorcontrib>De Roeck, Guido</creatorcontrib><creatorcontrib>Bui-Tien, Thanh</creatorcontrib><creatorcontrib>Abdel-Wahab, Magd</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen-Ngoc, Lan</au><au>Nguyen-Huu, Quyet</au><au>De Roeck, Guido</au><au>Bui-Tien, Thanh</au><au>Abdel-Wahab, Magd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Network and Evolved Optimization Algorithm for Damage Assessment in a Truss Bridge</atitle><jtitle>Mathematics (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>12</volume><issue>15</issue><spage>2300</spage><pages>2300-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>In Structural Health Monitoring (SHM) of bridges, accurately assessing damage is critical to maintaining the safety and integrity of a structure. One of the primary challenges in damage assessment is the precise localization and quantification of defects, which is essential for making timely maintenance decisions and reducing the risk of structural failures. This paper introduces a novel damage detection method for SHM of a truss bridge by coupling a Deep Neural Network (DNN) model with an evolved Artificial Rabbit Optimization (EVARO) algorithm. The integration of DNN with the stochastic search capability of the EVARO algorithm helps to avoid local minima, thereby ensuring more accurate and reliable results. Additionally, the optimization algorithm’s effectiveness is further enhanced by incorporating evolving predator features and the Cauchy motion search mechanism. The proposed method is first validated using various data benchmark problems, demonstrating its effectiveness compared to other well-known algorithms. Secondly, a case study involving the Chuong Duong truss bridge under different simulated damage scenarios further confirms the superiority of the proposed method in both localizing and quantifying damages.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math12152300</doi><orcidid>https://orcid.org/0000-0001-7186-4509</orcidid><orcidid>https://orcid.org/0000-0002-4001-9246</orcidid><orcidid>https://orcid.org/0000-0002-3610-865X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2024-08, Vol.12 (15), p.2300
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3270efc04cbe463ab50b0b1a8f2b914c
source Publicly Available Content Database
subjects Accuracy
Algorithms
Analysis
Artificial neural networks
Bridge failure
Bridge maintenance
Bridges
Case studies
Civil engineering
Damage assessment
Damage detection
Damage localization
Effectiveness
machine learning
Neural networks
Optimization
optimization algorithm
Optimization algorithms
Scheduling
Sensors
Structural failure
Structural health monitoring
truss bridge
Truss bridges
title Deep Neural Network and Evolved Optimization Algorithm for Damage Assessment in a Truss Bridge
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Network%20and%20Evolved%20Optimization%20Algorithm%20for%20Damage%20Assessment%20in%20a%20Truss%20Bridge&rft.jtitle=Mathematics%20(Basel)&rft.au=Nguyen-Ngoc,%20Lan&rft.date=2024-08-01&rft.volume=12&rft.issue=15&rft.spage=2300&rft.pages=2300-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math12152300&rft_dat=%3Cgale_doaj_%3EA804514656%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-9486cef99258ad4b622c77f76d8df87250b22fe139dc6b37c42fb8d6580abba13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090918431&rft_id=info:pmid/&rft_galeid=A804514656&rfr_iscdi=true