Loading…

A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog

Two super-integrable and super-separable classical systems which can be considered as deformations of the harmonic oscillator and the Smorodinsky-Winternitz in two dimensions are studied and identified with motions in spaces of constant curvature, the deformation parameter being related with the cur...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2007-01, Vol.3, p.030
Main Author: Cariñena, José F.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-90a2b35835122370da8dfdeb357461b7cc4898d2b8ba5ca4b6e5f49a298031f63
cites
container_end_page
container_issue
container_start_page 030
container_title Symmetry, integrability and geometry, methods and applications
container_volume 3
creator Cariñena, José F.
description Two super-integrable and super-separable classical systems which can be considered as deformations of the harmonic oscillator and the Smorodinsky-Winternitz in two dimensions are studied and identified with motions in spaces of constant curvature, the deformation parameter being related with the curvature. In this sense these systems are to be considered as a harmonic oscillator and a Smorodinsky-Winternitz system in such bi-dimensional spaces of constant curvature. The quantization of the first system will be carried out and it is shown that it is super-solvable in the sense that the Schrödinger equation reduces, in three different coordinate systems, to two separate equations involving only one degree of freedom.
doi_str_mv 10.3842/SIGMA.2007.030
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3282bbb9592a4324aea989f55ceee680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3282bbb9592a4324aea989f55ceee680</doaj_id><sourcerecordid>2725686511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-90a2b35835122370da8dfdeb357461b7cc4898d2b8ba5ca4b6e5f49a298031f63</originalsourceid><addsrcrecordid>eNpNUctOwzAQtBBIlMKVsyXOKX6m9rEqUCoVECqczdpxSqo0LnbC4-8JLUKcdjWamdXsIHROyYgrwS6X89ndZMQIGY8IJwdoQBWVGcmlPvy3H6OTlNaEiFzkZIBeJnjZbX3M5k3rVxFs7fHTR8iuqo1vUhUaqPF9aLJF1XiI-CG5qq6hDRF_VO0rhgZff4Jr6y-8DPX7Tv7YQdN2GzzptWF1io5KqJM_-51D9Hxz_TS9zRYPs_l0ssicoKrNNAFmuVRcUsb4mBSgirLwPTQWObVj54TSqmBWWZAOhM29LIUGphXhtMz5EM33vkWAtdnGagPxywSozA4IcWUgtpWrveFMMWutlpqB4EyAB610KaXz3ue93xBd7L22Mbx1PrVmHbrYx0mG9q8VhOVC9KzRnuViSCn68u8qJeanEbNrxPw0YnoZ_wZjFn2F</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030402644</pqid></control><display><type>article</type><title>A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog</title><source>Publicly Available Content (ProQuest)</source><creator>Cariñena, José F.</creator><creatorcontrib>Cariñena, José F.</creatorcontrib><description>Two super-integrable and super-separable classical systems which can be considered as deformations of the harmonic oscillator and the Smorodinsky-Winternitz in two dimensions are studied and identified with motions in spaces of constant curvature, the deformation parameter being related with the curvature. In this sense these systems are to be considered as a harmonic oscillator and a Smorodinsky-Winternitz system in such bi-dimensional spaces of constant curvature. The quantization of the first system will be carried out and it is shown that it is super-solvable in the sense that the Schrödinger equation reduces, in three different coordinate systems, to two separate equations involving only one degree of freedom.</description><identifier>ISSN: 1815-0659</identifier><identifier>EISSN: 1815-0659</identifier><identifier>DOI: 10.3842/SIGMA.2007.030</identifier><language>eng</language><publisher>Kiev: National Academy of Sciences of Ukraine</publisher><subject>deformed oscillator ; Hamilton-Jacobi separability ; Hamilton-Jacobi super-separability ; integrability ; quantum solvable systems ; super-integrability</subject><ispartof>Symmetry, integrability and geometry, methods and applications, 2007-01, Vol.3, p.030</ispartof><rights>Copyright National Academy of Sciences of Ukraine 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-90a2b35835122370da8dfdeb357461b7cc4898d2b8ba5ca4b6e5f49a298031f63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1030402644?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Cariñena, José F.</creatorcontrib><title>A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog</title><title>Symmetry, integrability and geometry, methods and applications</title><description>Two super-integrable and super-separable classical systems which can be considered as deformations of the harmonic oscillator and the Smorodinsky-Winternitz in two dimensions are studied and identified with motions in spaces of constant curvature, the deformation parameter being related with the curvature. In this sense these systems are to be considered as a harmonic oscillator and a Smorodinsky-Winternitz system in such bi-dimensional spaces of constant curvature. The quantization of the first system will be carried out and it is shown that it is super-solvable in the sense that the Schrödinger equation reduces, in three different coordinate systems, to two separate equations involving only one degree of freedom.</description><subject>deformed oscillator</subject><subject>Hamilton-Jacobi separability</subject><subject>Hamilton-Jacobi super-separability</subject><subject>integrability</subject><subject>quantum solvable systems</subject><subject>super-integrability</subject><issn>1815-0659</issn><issn>1815-0659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQtBBIlMKVsyXOKX6m9rEqUCoVECqczdpxSqo0LnbC4-8JLUKcdjWamdXsIHROyYgrwS6X89ndZMQIGY8IJwdoQBWVGcmlPvy3H6OTlNaEiFzkZIBeJnjZbX3M5k3rVxFs7fHTR8iuqo1vUhUaqPF9aLJF1XiI-CG5qq6hDRF_VO0rhgZff4Jr6y-8DPX7Tv7YQdN2GzzptWF1io5KqJM_-51D9Hxz_TS9zRYPs_l0ssicoKrNNAFmuVRcUsb4mBSgirLwPTQWObVj54TSqmBWWZAOhM29LIUGphXhtMz5EM33vkWAtdnGagPxywSozA4IcWUgtpWrveFMMWutlpqB4EyAB610KaXz3ue93xBd7L22Mbx1PrVmHbrYx0mG9q8VhOVC9KzRnuViSCn68u8qJeanEbNrxPw0YnoZ_wZjFn2F</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Cariñena, José F.</creator><general>National Academy of Sciences of Ukraine</general><general>National Academy of Science of Ukraine</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20070101</creationdate><title>A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog</title><author>Cariñena, José F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-90a2b35835122370da8dfdeb357461b7cc4898d2b8ba5ca4b6e5f49a298031f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>deformed oscillator</topic><topic>Hamilton-Jacobi separability</topic><topic>Hamilton-Jacobi super-separability</topic><topic>integrability</topic><topic>quantum solvable systems</topic><topic>super-integrability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cariñena, José F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cariñena, José F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog</atitle><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>3</volume><spage>030</spage><pages>030-</pages><issn>1815-0659</issn><eissn>1815-0659</eissn><abstract>Two super-integrable and super-separable classical systems which can be considered as deformations of the harmonic oscillator and the Smorodinsky-Winternitz in two dimensions are studied and identified with motions in spaces of constant curvature, the deformation parameter being related with the curvature. In this sense these systems are to be considered as a harmonic oscillator and a Smorodinsky-Winternitz system in such bi-dimensional spaces of constant curvature. The quantization of the first system will be carried out and it is shown that it is super-solvable in the sense that the Schrödinger equation reduces, in three different coordinate systems, to two separate equations involving only one degree of freedom.</abstract><cop>Kiev</cop><pub>National Academy of Sciences of Ukraine</pub><doi>10.3842/SIGMA.2007.030</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1815-0659
ispartof Symmetry, integrability and geometry, methods and applications, 2007-01, Vol.3, p.030
issn 1815-0659
1815-0659
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3282bbb9592a4324aea989f55ceee680
source Publicly Available Content (ProQuest)
subjects deformed oscillator
Hamilton-Jacobi separability
Hamilton-Jacobi super-separability
integrability
quantum solvable systems
super-integrability
title A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Super-Integrable%20Two-Dimensional%20Non-Linear%20Oscillator%20with%20an%20Exactly%20Solvable%20Quantum%20Analog&rft.jtitle=Symmetry,%20integrability%20and%20geometry,%20methods%20and%20applications&rft.au=Cari%C3%B1ena,%20Jos%C3%A9%20F.&rft.date=2007-01-01&rft.volume=3&rft.spage=030&rft.pages=030-&rft.issn=1815-0659&rft.eissn=1815-0659&rft_id=info:doi/10.3842/SIGMA.2007.030&rft_dat=%3Cproquest_doaj_%3E2725686511%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-90a2b35835122370da8dfdeb357461b7cc4898d2b8ba5ca4b6e5f49a298031f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030402644&rft_id=info:pmid/&rfr_iscdi=true