Loading…

An Optomechanical Elevator: Transport of a Bloch Oscillating Bose–Einstein Condensate up and down an Optical Lattice by Cavity Sideband Amplification and Cooling

In this paper we give a new description, in terms of optomechanics, of previous work on the problem of an atomic Bose-Einstein condensate interacting with the optical lattice inside a laser-pumped optical cavity and subject to a bias force, such as gravity. An atomic wave packet in a tilted lattice...

Full description

Saved in:
Bibliographic Details
Published in:Atoms 2016-03, Vol.4 (1), p.2-2
Main Authors: Venkatesh, B Prasanna, O'Dell, Duncan HJ, Goldwin, Jonathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we give a new description, in terms of optomechanics, of previous work on the problem of an atomic Bose-Einstein condensate interacting with the optical lattice inside a laser-pumped optical cavity and subject to a bias force, such as gravity. An atomic wave packet in a tilted lattice undergoes Bloch oscillations; in a high-finesse optical cavity the backaction of the atoms on the light leads to a time-dependent modulation of the intracavity lattice depth at the Bloch frequency which can in turn transport the atoms up or down the lattice. In the optomechanical picture, the transport dynamics can be interpreted as a manifestation of dynamical backaction-induced sideband damping/amplification of the Bloch oscillator. Depending on the sign of the pump-cavity detuning, atoms are transported either with or against the bias force accompanied by an up- or down-conversion of the frequency of the pump laser light. We also evaluate the prospects for using the optomechanical Bloch oscillator to make continuous measurements of forces by reading out the Bloch frequency. In this context, we establish the significant result that the optical spring effect is absent and the Bloch frequency is not modified by the backaction.
ISSN:2218-2004
2218-2004
DOI:10.3390/atoms4010002