Loading…

Unwinding of a DNA replication fork by a hexameric viral helicase

Hexameric helicases are motor proteins that unwind double-stranded DNA (dsDNA) during DNA replication but how they are optimised for strand separation is unclear. Here we present the cryo-EM structure of the full-length E1 helicase from papillomavirus, revealing all arms of a bound DNA replication f...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-09, Vol.12 (1), p.5535-5535, Article 5535
Main Authors: Javed, Abid, Major, Balazs, Stead, Jonathan A., Sanders, Cyril M., Orlova, Elena V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hexameric helicases are motor proteins that unwind double-stranded DNA (dsDNA) during DNA replication but how they are optimised for strand separation is unclear. Here we present the cryo-EM structure of the full-length E1 helicase from papillomavirus, revealing all arms of a bound DNA replication fork and their interactions with the helicase. The replication fork junction is located at the entrance to the helicase collar ring, that sits above the AAA + motor assembly. dsDNA is escorted to and the 5´ single-stranded DNA (ssDNA) away from the unwinding point by the E1 dsDNA origin binding domains. The 3´ ssDNA interacts with six spirally-arranged β-hairpins and their cyclical top-to-bottom movement pulls the ssDNA through the helicase. Pulling of the RF against the collar ring separates the base-pairs, while modelling of the conformational cycle suggest an accompanying movement of the collar ring has an auxiliary role, helping to make efficient use of ATP in duplex unwinding. Replicative hexameric helicases are fundamental components of replisomes. Here the authors resolve a cryo-EM structure of the E1 helicase from papillomavirus bound to a DNA replication fork, providing insights into the mechanism of DNA unwinding by these hexameric enzymes.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25843-6