Loading…
Design and Characterization of Semi-Floating-Gate Synaptic Transistor
In this work, a study on a semi-floating-gate synaptic transistor (SFGST) is performed to verify its feasibility in the more energy-efficient hardware-driven neuromorphic system. To realize short- and long-term potentiation (STP/LTP) in the SFGST, a poly-Si semi-floating gate (SFG) and a SiN charge-...
Saved in:
Published in: | Micromachines (Basel) 2019-01, Vol.10 (1), p.32 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883 |
---|---|
cites | cdi_FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883 |
container_end_page | |
container_issue | 1 |
container_start_page | 32 |
container_title | Micromachines (Basel) |
container_volume | 10 |
creator | Cho, Yongbeom Lee, Jae Yoon Yu, Eunseon Han, Jae-Hee Baek, Myung-Hyun Cho, Seongjae Park, Byung-Gook |
description | In this work, a study on a semi-floating-gate synaptic transistor (SFGST) is performed to verify its feasibility in the more energy-efficient hardware-driven neuromorphic system. To realize short- and long-term potentiation (STP/LTP) in the SFGST, a poly-Si semi-floating gate (SFG) and a SiN charge-trap layer are utilized, respectively. When an adequate number of holes are accumulated in the SFG, they are injected into the nitride charge-trap layer by the Fowler⁻Nordheim tunneling mechanism. Moreover, since the SFG is charged by an embedded tunneling field-effect transistor existing between the channel and the drain junction when the post-synaptic spike occurs after the pre-synaptic spike, and vice versa, the SFG is discharged by the diode when the post-synaptic spike takes place before the pre-synaptic spike. This indicates that the SFGST can attain STP/LTP and spike-timing-dependent plasticity behaviors. These characteristics of the SFGST in the highly miniaturized transistor structure can contribute to the neuromorphic chip such that the total system may operate as fast as the human brain with low power consumption and high integration density. |
doi_str_mv | 10.3390/mi10010032 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_32d73c840d5e4fcaa9cfe73213799779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_32d73c840d5e4fcaa9cfe73213799779</doaj_id><sourcerecordid>2165664349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhoMottTe-ANkwBsRRjMnmXzcCLK2tVDwohW8C2cyyTbLTLIms4X6603dWltDvjh5efJyXkJed_QDY5p-nENHaZ0MnpFDoBJaIcSP54_uB-S4lA2tQ0pdt5fkgFEBHWXskJx8cSWsY4NxbFbXmNEuLodfuIQUm-SbSzeH9nRKtRDX7Rkurrm8jbhdgm2uMsYSypLyK_LC41Tc8f15RL6fnlytvrYX387OV58vWsslLC24cdAKLHirRt4zYRX0YpQdCI8DZ4ohCg6-8x2Tg4KhLlSiF8B7SpViR-R8zx0Tbsw2hxnzrUkYzJ9CymuDuVqbnGEwSmYVp2PvuLeI2nonGVSy1rURlfVpz9ruhtmN1sUl4_QE-vQlhmuzTjdGsF5SChXw7h6Q08-dK4uZQ7FumjC6tCsGuupccMbv_nr7n3STdjnWVhnoudJaCS2r6v1eZXMqJTv_YKaj5i5s8y_sKn7z2P6D9G-07DdaG6K5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548998697</pqid></control><display><type>article</type><title>Design and Characterization of Semi-Floating-Gate Synaptic Transistor</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Cho, Yongbeom ; Lee, Jae Yoon ; Yu, Eunseon ; Han, Jae-Hee ; Baek, Myung-Hyun ; Cho, Seongjae ; Park, Byung-Gook</creator><creatorcontrib>Cho, Yongbeom ; Lee, Jae Yoon ; Yu, Eunseon ; Han, Jae-Hee ; Baek, Myung-Hyun ; Cho, Seongjae ; Park, Byung-Gook</creatorcontrib><description>In this work, a study on a semi-floating-gate synaptic transistor (SFGST) is performed to verify its feasibility in the more energy-efficient hardware-driven neuromorphic system. To realize short- and long-term potentiation (STP/LTP) in the SFGST, a poly-Si semi-floating gate (SFG) and a SiN charge-trap layer are utilized, respectively. When an adequate number of holes are accumulated in the SFG, they are injected into the nitride charge-trap layer by the Fowler⁻Nordheim tunneling mechanism. Moreover, since the SFG is charged by an embedded tunneling field-effect transistor existing between the channel and the drain junction when the post-synaptic spike occurs after the pre-synaptic spike, and vice versa, the SFG is discharged by the diode when the post-synaptic spike takes place before the pre-synaptic spike. This indicates that the SFGST can attain STP/LTP and spike-timing-dependent plasticity behaviors. These characteristics of the SFGST in the highly miniaturized transistor structure can contribute to the neuromorphic chip such that the total system may operate as fast as the human brain with low power consumption and high integration density.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi10010032</identifier><identifier>PMID: 30621033</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Artificial intelligence ; Bias ; Efficiency ; Electric fields ; Field effect transistors ; highly miniaturized transistor structure ; low power consumption ; neuromorphic system ; Polysilicon ; Power consumption ; semi-floating gate ; Semiconductor devices ; Simulation ; spike-timing-dependent plasticity (STDP) ; Spikes ; synaptic transistor ; Transistors</subject><ispartof>Micromachines (Basel), 2019-01, Vol.10 (1), p.32</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883</citedby><cites>FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883</cites><orcidid>0000-0001-8520-718X ; 0000-0001-7476-6787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548998697/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548998697?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30621033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Yongbeom</creatorcontrib><creatorcontrib>Lee, Jae Yoon</creatorcontrib><creatorcontrib>Yu, Eunseon</creatorcontrib><creatorcontrib>Han, Jae-Hee</creatorcontrib><creatorcontrib>Baek, Myung-Hyun</creatorcontrib><creatorcontrib>Cho, Seongjae</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><title>Design and Characterization of Semi-Floating-Gate Synaptic Transistor</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>In this work, a study on a semi-floating-gate synaptic transistor (SFGST) is performed to verify its feasibility in the more energy-efficient hardware-driven neuromorphic system. To realize short- and long-term potentiation (STP/LTP) in the SFGST, a poly-Si semi-floating gate (SFG) and a SiN charge-trap layer are utilized, respectively. When an adequate number of holes are accumulated in the SFG, they are injected into the nitride charge-trap layer by the Fowler⁻Nordheim tunneling mechanism. Moreover, since the SFG is charged by an embedded tunneling field-effect transistor existing between the channel and the drain junction when the post-synaptic spike occurs after the pre-synaptic spike, and vice versa, the SFG is discharged by the diode when the post-synaptic spike takes place before the pre-synaptic spike. This indicates that the SFGST can attain STP/LTP and spike-timing-dependent plasticity behaviors. These characteristics of the SFGST in the highly miniaturized transistor structure can contribute to the neuromorphic chip such that the total system may operate as fast as the human brain with low power consumption and high integration density.</description><subject>Artificial intelligence</subject><subject>Bias</subject><subject>Efficiency</subject><subject>Electric fields</subject><subject>Field effect transistors</subject><subject>highly miniaturized transistor structure</subject><subject>low power consumption</subject><subject>neuromorphic system</subject><subject>Polysilicon</subject><subject>Power consumption</subject><subject>semi-floating gate</subject><subject>Semiconductor devices</subject><subject>Simulation</subject><subject>spike-timing-dependent plasticity (STDP)</subject><subject>Spikes</subject><subject>synaptic transistor</subject><subject>Transistors</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV1rFDEUhoMottTe-ANkwBsRRjMnmXzcCLK2tVDwohW8C2cyyTbLTLIms4X6603dWltDvjh5efJyXkJed_QDY5p-nENHaZ0MnpFDoBJaIcSP54_uB-S4lA2tQ0pdt5fkgFEBHWXskJx8cSWsY4NxbFbXmNEuLodfuIQUm-SbSzeH9nRKtRDX7Rkurrm8jbhdgm2uMsYSypLyK_LC41Tc8f15RL6fnlytvrYX387OV58vWsslLC24cdAKLHirRt4zYRX0YpQdCI8DZ4ohCg6-8x2Tg4KhLlSiF8B7SpViR-R8zx0Tbsw2hxnzrUkYzJ9CymuDuVqbnGEwSmYVp2PvuLeI2nonGVSy1rURlfVpz9ruhtmN1sUl4_QE-vQlhmuzTjdGsF5SChXw7h6Q08-dK4uZQ7FumjC6tCsGuupccMbv_nr7n3STdjnWVhnoudJaCS2r6v1eZXMqJTv_YKaj5i5s8y_sKn7z2P6D9G-07DdaG6K5</recordid><startdate>20190107</startdate><enddate>20190107</enddate><creator>Cho, Yongbeom</creator><creator>Lee, Jae Yoon</creator><creator>Yu, Eunseon</creator><creator>Han, Jae-Hee</creator><creator>Baek, Myung-Hyun</creator><creator>Cho, Seongjae</creator><creator>Park, Byung-Gook</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8520-718X</orcidid><orcidid>https://orcid.org/0000-0001-7476-6787</orcidid></search><sort><creationdate>20190107</creationdate><title>Design and Characterization of Semi-Floating-Gate Synaptic Transistor</title><author>Cho, Yongbeom ; Lee, Jae Yoon ; Yu, Eunseon ; Han, Jae-Hee ; Baek, Myung-Hyun ; Cho, Seongjae ; Park, Byung-Gook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Bias</topic><topic>Efficiency</topic><topic>Electric fields</topic><topic>Field effect transistors</topic><topic>highly miniaturized transistor structure</topic><topic>low power consumption</topic><topic>neuromorphic system</topic><topic>Polysilicon</topic><topic>Power consumption</topic><topic>semi-floating gate</topic><topic>Semiconductor devices</topic><topic>Simulation</topic><topic>spike-timing-dependent plasticity (STDP)</topic><topic>Spikes</topic><topic>synaptic transistor</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Yongbeom</creatorcontrib><creatorcontrib>Lee, Jae Yoon</creatorcontrib><creatorcontrib>Yu, Eunseon</creatorcontrib><creatorcontrib>Han, Jae-Hee</creatorcontrib><creatorcontrib>Baek, Myung-Hyun</creatorcontrib><creatorcontrib>Cho, Seongjae</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Yongbeom</au><au>Lee, Jae Yoon</au><au>Yu, Eunseon</au><au>Han, Jae-Hee</au><au>Baek, Myung-Hyun</au><au>Cho, Seongjae</au><au>Park, Byung-Gook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Characterization of Semi-Floating-Gate Synaptic Transistor</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2019-01-07</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>32</spage><pages>32-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>In this work, a study on a semi-floating-gate synaptic transistor (SFGST) is performed to verify its feasibility in the more energy-efficient hardware-driven neuromorphic system. To realize short- and long-term potentiation (STP/LTP) in the SFGST, a poly-Si semi-floating gate (SFG) and a SiN charge-trap layer are utilized, respectively. When an adequate number of holes are accumulated in the SFG, they are injected into the nitride charge-trap layer by the Fowler⁻Nordheim tunneling mechanism. Moreover, since the SFG is charged by an embedded tunneling field-effect transistor existing between the channel and the drain junction when the post-synaptic spike occurs after the pre-synaptic spike, and vice versa, the SFG is discharged by the diode when the post-synaptic spike takes place before the pre-synaptic spike. This indicates that the SFGST can attain STP/LTP and spike-timing-dependent plasticity behaviors. These characteristics of the SFGST in the highly miniaturized transistor structure can contribute to the neuromorphic chip such that the total system may operate as fast as the human brain with low power consumption and high integration density.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30621033</pmid><doi>10.3390/mi10010032</doi><orcidid>https://orcid.org/0000-0001-8520-718X</orcidid><orcidid>https://orcid.org/0000-0001-7476-6787</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-666X |
ispartof | Micromachines (Basel), 2019-01, Vol.10 (1), p.32 |
issn | 2072-666X 2072-666X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_32d73c840d5e4fcaa9cfe73213799779 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Artificial intelligence Bias Efficiency Electric fields Field effect transistors highly miniaturized transistor structure low power consumption neuromorphic system Polysilicon Power consumption semi-floating gate Semiconductor devices Simulation spike-timing-dependent plasticity (STDP) Spikes synaptic transistor Transistors |
title | Design and Characterization of Semi-Floating-Gate Synaptic Transistor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Characterization%20of%20Semi-Floating-Gate%20Synaptic%20Transistor&rft.jtitle=Micromachines%20(Basel)&rft.au=Cho,%20Yongbeom&rft.date=2019-01-07&rft.volume=10&rft.issue=1&rft.spage=32&rft.pages=32-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi10010032&rft_dat=%3Cproquest_doaj_%3E2165664349%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548998697&rft_id=info:pmid/30621033&rfr_iscdi=true |