Loading…

Design and Characterization of Semi-Floating-Gate Synaptic Transistor

In this work, a study on a semi-floating-gate synaptic transistor (SFGST) is performed to verify its feasibility in the more energy-efficient hardware-driven neuromorphic system. To realize short- and long-term potentiation (STP/LTP) in the SFGST, a poly-Si semi-floating gate (SFG) and a SiN charge-...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2019-01, Vol.10 (1), p.32
Main Authors: Cho, Yongbeom, Lee, Jae Yoon, Yu, Eunseon, Han, Jae-Hee, Baek, Myung-Hyun, Cho, Seongjae, Park, Byung-Gook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883
cites cdi_FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883
container_end_page
container_issue 1
container_start_page 32
container_title Micromachines (Basel)
container_volume 10
creator Cho, Yongbeom
Lee, Jae Yoon
Yu, Eunseon
Han, Jae-Hee
Baek, Myung-Hyun
Cho, Seongjae
Park, Byung-Gook
description In this work, a study on a semi-floating-gate synaptic transistor (SFGST) is performed to verify its feasibility in the more energy-efficient hardware-driven neuromorphic system. To realize short- and long-term potentiation (STP/LTP) in the SFGST, a poly-Si semi-floating gate (SFG) and a SiN charge-trap layer are utilized, respectively. When an adequate number of holes are accumulated in the SFG, they are injected into the nitride charge-trap layer by the Fowler⁻Nordheim tunneling mechanism. Moreover, since the SFG is charged by an embedded tunneling field-effect transistor existing between the channel and the drain junction when the post-synaptic spike occurs after the pre-synaptic spike, and vice versa, the SFG is discharged by the diode when the post-synaptic spike takes place before the pre-synaptic spike. This indicates that the SFGST can attain STP/LTP and spike-timing-dependent plasticity behaviors. These characteristics of the SFGST in the highly miniaturized transistor structure can contribute to the neuromorphic chip such that the total system may operate as fast as the human brain with low power consumption and high integration density.
doi_str_mv 10.3390/mi10010032
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_32d73c840d5e4fcaa9cfe73213799779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_32d73c840d5e4fcaa9cfe73213799779</doaj_id><sourcerecordid>2165664349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhoMottTe-ANkwBsRRjMnmXzcCLK2tVDwohW8C2cyyTbLTLIms4X6603dWltDvjh5efJyXkJed_QDY5p-nENHaZ0MnpFDoBJaIcSP54_uB-S4lA2tQ0pdt5fkgFEBHWXskJx8cSWsY4NxbFbXmNEuLodfuIQUm-SbSzeH9nRKtRDX7Rkurrm8jbhdgm2uMsYSypLyK_LC41Tc8f15RL6fnlytvrYX387OV58vWsslLC24cdAKLHirRt4zYRX0YpQdCI8DZ4ohCg6-8x2Tg4KhLlSiF8B7SpViR-R8zx0Tbsw2hxnzrUkYzJ9CymuDuVqbnGEwSmYVp2PvuLeI2nonGVSy1rURlfVpz9ruhtmN1sUl4_QE-vQlhmuzTjdGsF5SChXw7h6Q08-dK4uZQ7FumjC6tCsGuupccMbv_nr7n3STdjnWVhnoudJaCS2r6v1eZXMqJTv_YKaj5i5s8y_sKn7z2P6D9G-07DdaG6K5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548998697</pqid></control><display><type>article</type><title>Design and Characterization of Semi-Floating-Gate Synaptic Transistor</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Cho, Yongbeom ; Lee, Jae Yoon ; Yu, Eunseon ; Han, Jae-Hee ; Baek, Myung-Hyun ; Cho, Seongjae ; Park, Byung-Gook</creator><creatorcontrib>Cho, Yongbeom ; Lee, Jae Yoon ; Yu, Eunseon ; Han, Jae-Hee ; Baek, Myung-Hyun ; Cho, Seongjae ; Park, Byung-Gook</creatorcontrib><description>In this work, a study on a semi-floating-gate synaptic transistor (SFGST) is performed to verify its feasibility in the more energy-efficient hardware-driven neuromorphic system. To realize short- and long-term potentiation (STP/LTP) in the SFGST, a poly-Si semi-floating gate (SFG) and a SiN charge-trap layer are utilized, respectively. When an adequate number of holes are accumulated in the SFG, they are injected into the nitride charge-trap layer by the Fowler⁻Nordheim tunneling mechanism. Moreover, since the SFG is charged by an embedded tunneling field-effect transistor existing between the channel and the drain junction when the post-synaptic spike occurs after the pre-synaptic spike, and vice versa, the SFG is discharged by the diode when the post-synaptic spike takes place before the pre-synaptic spike. This indicates that the SFGST can attain STP/LTP and spike-timing-dependent plasticity behaviors. These characteristics of the SFGST in the highly miniaturized transistor structure can contribute to the neuromorphic chip such that the total system may operate as fast as the human brain with low power consumption and high integration density.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi10010032</identifier><identifier>PMID: 30621033</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Artificial intelligence ; Bias ; Efficiency ; Electric fields ; Field effect transistors ; highly miniaturized transistor structure ; low power consumption ; neuromorphic system ; Polysilicon ; Power consumption ; semi-floating gate ; Semiconductor devices ; Simulation ; spike-timing-dependent plasticity (STDP) ; Spikes ; synaptic transistor ; Transistors</subject><ispartof>Micromachines (Basel), 2019-01, Vol.10 (1), p.32</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883</citedby><cites>FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883</cites><orcidid>0000-0001-8520-718X ; 0000-0001-7476-6787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548998697/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548998697?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30621033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Yongbeom</creatorcontrib><creatorcontrib>Lee, Jae Yoon</creatorcontrib><creatorcontrib>Yu, Eunseon</creatorcontrib><creatorcontrib>Han, Jae-Hee</creatorcontrib><creatorcontrib>Baek, Myung-Hyun</creatorcontrib><creatorcontrib>Cho, Seongjae</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><title>Design and Characterization of Semi-Floating-Gate Synaptic Transistor</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>In this work, a study on a semi-floating-gate synaptic transistor (SFGST) is performed to verify its feasibility in the more energy-efficient hardware-driven neuromorphic system. To realize short- and long-term potentiation (STP/LTP) in the SFGST, a poly-Si semi-floating gate (SFG) and a SiN charge-trap layer are utilized, respectively. When an adequate number of holes are accumulated in the SFG, they are injected into the nitride charge-trap layer by the Fowler⁻Nordheim tunneling mechanism. Moreover, since the SFG is charged by an embedded tunneling field-effect transistor existing between the channel and the drain junction when the post-synaptic spike occurs after the pre-synaptic spike, and vice versa, the SFG is discharged by the diode when the post-synaptic spike takes place before the pre-synaptic spike. This indicates that the SFGST can attain STP/LTP and spike-timing-dependent plasticity behaviors. These characteristics of the SFGST in the highly miniaturized transistor structure can contribute to the neuromorphic chip such that the total system may operate as fast as the human brain with low power consumption and high integration density.</description><subject>Artificial intelligence</subject><subject>Bias</subject><subject>Efficiency</subject><subject>Electric fields</subject><subject>Field effect transistors</subject><subject>highly miniaturized transistor structure</subject><subject>low power consumption</subject><subject>neuromorphic system</subject><subject>Polysilicon</subject><subject>Power consumption</subject><subject>semi-floating gate</subject><subject>Semiconductor devices</subject><subject>Simulation</subject><subject>spike-timing-dependent plasticity (STDP)</subject><subject>Spikes</subject><subject>synaptic transistor</subject><subject>Transistors</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV1rFDEUhoMottTe-ANkwBsRRjMnmXzcCLK2tVDwohW8C2cyyTbLTLIms4X6603dWltDvjh5efJyXkJed_QDY5p-nENHaZ0MnpFDoBJaIcSP54_uB-S4lA2tQ0pdt5fkgFEBHWXskJx8cSWsY4NxbFbXmNEuLodfuIQUm-SbSzeH9nRKtRDX7Rkurrm8jbhdgm2uMsYSypLyK_LC41Tc8f15RL6fnlytvrYX387OV58vWsslLC24cdAKLHirRt4zYRX0YpQdCI8DZ4ohCg6-8x2Tg4KhLlSiF8B7SpViR-R8zx0Tbsw2hxnzrUkYzJ9CymuDuVqbnGEwSmYVp2PvuLeI2nonGVSy1rURlfVpz9ruhtmN1sUl4_QE-vQlhmuzTjdGsF5SChXw7h6Q08-dK4uZQ7FumjC6tCsGuupccMbv_nr7n3STdjnWVhnoudJaCS2r6v1eZXMqJTv_YKaj5i5s8y_sKn7z2P6D9G-07DdaG6K5</recordid><startdate>20190107</startdate><enddate>20190107</enddate><creator>Cho, Yongbeom</creator><creator>Lee, Jae Yoon</creator><creator>Yu, Eunseon</creator><creator>Han, Jae-Hee</creator><creator>Baek, Myung-Hyun</creator><creator>Cho, Seongjae</creator><creator>Park, Byung-Gook</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8520-718X</orcidid><orcidid>https://orcid.org/0000-0001-7476-6787</orcidid></search><sort><creationdate>20190107</creationdate><title>Design and Characterization of Semi-Floating-Gate Synaptic Transistor</title><author>Cho, Yongbeom ; Lee, Jae Yoon ; Yu, Eunseon ; Han, Jae-Hee ; Baek, Myung-Hyun ; Cho, Seongjae ; Park, Byung-Gook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Bias</topic><topic>Efficiency</topic><topic>Electric fields</topic><topic>Field effect transistors</topic><topic>highly miniaturized transistor structure</topic><topic>low power consumption</topic><topic>neuromorphic system</topic><topic>Polysilicon</topic><topic>Power consumption</topic><topic>semi-floating gate</topic><topic>Semiconductor devices</topic><topic>Simulation</topic><topic>spike-timing-dependent plasticity (STDP)</topic><topic>Spikes</topic><topic>synaptic transistor</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Yongbeom</creatorcontrib><creatorcontrib>Lee, Jae Yoon</creatorcontrib><creatorcontrib>Yu, Eunseon</creatorcontrib><creatorcontrib>Han, Jae-Hee</creatorcontrib><creatorcontrib>Baek, Myung-Hyun</creatorcontrib><creatorcontrib>Cho, Seongjae</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Yongbeom</au><au>Lee, Jae Yoon</au><au>Yu, Eunseon</au><au>Han, Jae-Hee</au><au>Baek, Myung-Hyun</au><au>Cho, Seongjae</au><au>Park, Byung-Gook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Characterization of Semi-Floating-Gate Synaptic Transistor</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2019-01-07</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>32</spage><pages>32-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>In this work, a study on a semi-floating-gate synaptic transistor (SFGST) is performed to verify its feasibility in the more energy-efficient hardware-driven neuromorphic system. To realize short- and long-term potentiation (STP/LTP) in the SFGST, a poly-Si semi-floating gate (SFG) and a SiN charge-trap layer are utilized, respectively. When an adequate number of holes are accumulated in the SFG, they are injected into the nitride charge-trap layer by the Fowler⁻Nordheim tunneling mechanism. Moreover, since the SFG is charged by an embedded tunneling field-effect transistor existing between the channel and the drain junction when the post-synaptic spike occurs after the pre-synaptic spike, and vice versa, the SFG is discharged by the diode when the post-synaptic spike takes place before the pre-synaptic spike. This indicates that the SFGST can attain STP/LTP and spike-timing-dependent plasticity behaviors. These characteristics of the SFGST in the highly miniaturized transistor structure can contribute to the neuromorphic chip such that the total system may operate as fast as the human brain with low power consumption and high integration density.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30621033</pmid><doi>10.3390/mi10010032</doi><orcidid>https://orcid.org/0000-0001-8520-718X</orcidid><orcidid>https://orcid.org/0000-0001-7476-6787</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2019-01, Vol.10 (1), p.32
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_32d73c840d5e4fcaa9cfe73213799779
source Publicly Available Content (ProQuest); PubMed Central
subjects Artificial intelligence
Bias
Efficiency
Electric fields
Field effect transistors
highly miniaturized transistor structure
low power consumption
neuromorphic system
Polysilicon
Power consumption
semi-floating gate
Semiconductor devices
Simulation
spike-timing-dependent plasticity (STDP)
Spikes
synaptic transistor
Transistors
title Design and Characterization of Semi-Floating-Gate Synaptic Transistor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Characterization%20of%20Semi-Floating-Gate%20Synaptic%20Transistor&rft.jtitle=Micromachines%20(Basel)&rft.au=Cho,%20Yongbeom&rft.date=2019-01-07&rft.volume=10&rft.issue=1&rft.spage=32&rft.pages=32-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi10010032&rft_dat=%3Cproquest_doaj_%3E2165664349%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-2edb982c2fc8d4536c8256d7126fab4383aa642f1f137b82bb82a865624500883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548998697&rft_id=info:pmid/30621033&rfr_iscdi=true