Loading…
Holographic approach to the light-by-light contribution to the muon (g-2)
We discuss how holographic models of QCD are used to study the the hadronic light-by-light (HLbL) scattering amplitude contribution to the muon anomalous magnetic moment. After a brief description of the various models, we focus on a particular one, introduced by Hirn and Sanz, emphasizing the role...
Saved in:
Published in: | EPJ Web of conferences 2020, Vol.234, p.1002 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We discuss how holographic models of QCD are used to study the the hadronic light-by-light (HLbL) scattering amplitude contribution to the muon anomalous magnetic moment. After a brief description of the various models, we focus on a particular one, introduced by Hirn and Sanz, emphasizing the role it assigns to the pion, and the vector and-axial vector resonances. We review how the parameters of the model are fixed by imposing condition on the low energy and the deep Euclidean limit of two-point correlators of QCD vector and axial vector currents. We then focus on the evaluation of the three-point axial-vector-vector current correlator and the pion anomalous transition form factor to be used in the one-pion exchange HLbL diagram and study its asymptotic properties. Finally, we present preliminary results on the four vector current correlator that defines the Hadronic Light-by-Light tensor. We find that axial-vector resonances play an important rule in recovering the correct asymptotic behaviour predicted by QCD at large Euclidean momenta. |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/202023401002 |