Loading…

Risk Assessment of World Corn Salinization Hazard Factors Based on EPIC Model and Information Diffusion

Salinization is a serious land degradation phenomenon. This study identified the salinity stress threshold as a causal factor for salinization, focusing on global maize fields as the study area. By excluding environmental stressors and setting salinization scenarios, the EPIC model was used to simul...

Full description

Saved in:
Bibliographic Details
Published in:Land (Basel) 2023-11, Vol.12 (11), p.2076
Main Authors: Lin, Degen, Hu, Chuanqi, Lian, Fang, Wang, Jing’ai, Gu, Xingli, Yu, Yingxian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Salinization is a serious land degradation phenomenon. This study identified the salinity stress threshold as a causal factor for salinization, focusing on global maize fields as the study area. By excluding environmental stressors and setting salinization scenarios, the EPIC model was used to simulate the daily salinity stress threshold during the corn growth process. The global intensity and risk of salinization-induced disaster for maize were evaluated. Based on the principle of information diffusion, the intensity of salinization-induced disaster was calculated for different return periods. The main conclusions were as follows: (1) By excluding environmental stress factors and setting salinization scenarios, algorithms for the salinization index during the growing season and the intensity of salinization-induced disaster were proposed. (2) The salinity hazard factor is highly risky and concentrated in arid and semi-arid regions, while it is relatively low in humid regions. (3) As the recurrence period increases, the risk of salinization-induced hazard becomes higher, the affected area expands, and the risk level increases. (4) The salinization intensity results of this study are consistent with the research results of HWSD (R2 = 0.9546) and GLASOD (R2 = 0.9162).
ISSN:2073-445X
2073-445X
DOI:10.3390/land12112076