Loading…
The Impact of Climate Change on the Surface Albedo over the Qinghai-Tibet Plateau
Albedo is a characterization of the Earth’s surface ability to reflect solar radiation, and control the amount of solar radiation absorbed by the land surface. Within the context of global warming, the temporal and spatial changes of the albedo and its response to climate factors remain unclear. Bas...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-06, Vol.13 (12), p.2336 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Albedo is a characterization of the Earth’s surface ability to reflect solar radiation, and control the amount of solar radiation absorbed by the land surface. Within the context of global warming, the temporal and spatial changes of the albedo and its response to climate factors remain unclear. Based on MCD43A3 (V005) albedo and meteorological data (i.e., temperature and precipitation), we analyzed the spatiotemporal variations of albedo (2000–2016) and its responses to climate change during the growing season on the Qinghai-Tibet Plateau (QTP). The results indicated an overall downward trend in the annual albedo during the growing season, the decrease rate was 0.25%/decade, and the monthly albedo showed a similar trend, especially in May, when the decrease rate was 0.53%/decade. The changes also showed regional variations, such as for the annual albedo, the areas with significant decrease and increase in albedo were 181.52 × 103 km2 (13.10%) and 48.82 × 103 km2 (3.52%), respectively, and the intensity of albedo changes in low-elevation areas was more pronounced than in high-elevation areas. In addition, the annual albedo-temperature/precipitation relationships clearly differed at different elevations. The albedo below 2000 m and at 5000–6000 m was mainly negatively correlated with temperature, while at 2000–4000 m it was mainly negatively correlated with precipitation. The contemporaneous temperature could negatively impact the monthly albedo in significant ways at the beginning of the growing season (May and June), whereas in the middle of the growing season (July and August), the albedo was mainly negatively correlated with precipitation, and at the end of the growing season (September), the albedo showed a weak correlation with temperature/precipitation. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13122336 |