Loading…

A Simple and Accurate Apollo-Trained Neural Network Controller for Mars Atmospheric Entry

We present a new method to design the controller for Mars capsule atmospheric entry using deep neural networks and flight-proven Apollo entry data. The controller is trained to modulate the bank angle with data from the Apollo entry simulations. The neural network controller reproduces the classical...

Full description

Saved in:
Bibliographic Details
Published in:International journal of aerospace engineering 2020, Vol.2020 (2020), p.1-15
Main Authors: Wang, Hao, Elgohary, Tarek A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3
cites cdi_FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3
container_end_page 15
container_issue 2020
container_start_page 1
container_title International journal of aerospace engineering
container_volume 2020
creator Wang, Hao
Elgohary, Tarek A.
description We present a new method to design the controller for Mars capsule atmospheric entry using deep neural networks and flight-proven Apollo entry data. The controller is trained to modulate the bank angle with data from the Apollo entry simulations. The neural network controller reproduces the classical Apollo results over a variation of entry state initial conditions. Compared to the Apollo controller as a baseline, the present approach achieves the same level of accuracy for both linear and nonlinear entry dynamics. The Apollo-trained controller is then applied to Mars entry missions. As in Earth environment, the controller achieves the desired level of accuracy for Mars missions using both linear and nonlinear entry dynamics with higher uncertainties in the entry states and the atmospheric density. The deep neural network is only trained with data from Apollo reentry simulation in an Earth model and works in both Earth and Mars environments. It achieves the desired landing accuracy for a Mars capsule. This method works with both linear and nonlinear integration and can generate the bank angle commands in real-time without a prestored trajectory.
doi_str_mv 10.1155/2020/3793740
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_331d5c9e1cb741c4a566f0c08f1f8a5f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_331d5c9e1cb741c4a566f0c08f1f8a5f</doaj_id><sourcerecordid>2444286487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBWALgQQUNmZkiRECdvxKxqgqD4nHQBmYLMe5hpQ0Dk6qqv8elyAYma51_enY0kHohJJLSoW4SklKrpjKmeJkBx1QmalE5Irv_p6l3EeHfb8gRBKhxAF6LfBzvewawKatcGHtKpgBcNH5pvHJPJi6hQo_Qlw3cQxrHz7w1LdDiAACdj7gBxN6XAxL33fvEGqLZ_F6c4T2nGl6OP6ZE_RyPZtPb5P7p5u7aXGfWJ7KIZGWUHBcpa60AhhTgpXWAQNJgMpKCuGkzEluDS9lVbKKUFPy0hBGhWMU2ATdjbmVNwvdhXppwkZ7U-vvhQ9v2oShtg1oxmglbA7UlopTy42Q0hFLMkddZmLcBJ2NWV3wnyvoB73wq9DG7-uUc55mkmcqqotR2eD7PoD7fZUSvS1Cb4vQP0VEfj7y97qtzLr-T5-OGqIBZ_50rJAwyb4AFxSRKQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444286487</pqid></control><display><type>article</type><title>A Simple and Accurate Apollo-Trained Neural Network Controller for Mars Atmospheric Entry</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Wang, Hao ; Elgohary, Tarek A.</creator><contributor>Biggs, James D. ; James D Biggs</contributor><creatorcontrib>Wang, Hao ; Elgohary, Tarek A. ; Biggs, James D. ; James D Biggs</creatorcontrib><description>We present a new method to design the controller for Mars capsule atmospheric entry using deep neural networks and flight-proven Apollo entry data. The controller is trained to modulate the bank angle with data from the Apollo entry simulations. The neural network controller reproduces the classical Apollo results over a variation of entry state initial conditions. Compared to the Apollo controller as a baseline, the present approach achieves the same level of accuracy for both linear and nonlinear entry dynamics. The Apollo-trained controller is then applied to Mars entry missions. As in Earth environment, the controller achieves the desired level of accuracy for Mars missions using both linear and nonlinear entry dynamics with higher uncertainties in the entry states and the atmospheric density. The deep neural network is only trained with data from Apollo reentry simulation in an Earth model and works in both Earth and Mars environments. It achieves the desired landing accuracy for a Mars capsule. This method works with both linear and nonlinear integration and can generate the bank angle commands in real-time without a prestored trajectory.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2020/3793740</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Aerospace engineering ; Algorithms ; Artificial neural networks ; Atmosphere ; Atmospheric density ; Atmospheric entry ; Computer simulation ; Control systems design ; Controllers ; Deep learning ; Earth ; Earth environment ; Earth models ; Initial conditions ; Machine learning ; Mars environment ; Mars missions ; Methods ; Neural networks ; Nonlinear dynamics ; Velocity</subject><ispartof>International journal of aerospace engineering, 2020, Vol.2020 (2020), p.1-15</ispartof><rights>Copyright © 2020 Hao Wang and Tarek A. Elgohary.</rights><rights>Copyright © 2020 Hao Wang and Tarek A. Elgohary. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3</citedby><cites>FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3</cites><orcidid>0000-0002-6587-4126 ; 0000-0002-6901-2689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2444286487/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2444286487?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,74998</link.rule.ids></links><search><contributor>Biggs, James D.</contributor><contributor>James D Biggs</contributor><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Elgohary, Tarek A.</creatorcontrib><title>A Simple and Accurate Apollo-Trained Neural Network Controller for Mars Atmospheric Entry</title><title>International journal of aerospace engineering</title><description>We present a new method to design the controller for Mars capsule atmospheric entry using deep neural networks and flight-proven Apollo entry data. The controller is trained to modulate the bank angle with data from the Apollo entry simulations. The neural network controller reproduces the classical Apollo results over a variation of entry state initial conditions. Compared to the Apollo controller as a baseline, the present approach achieves the same level of accuracy for both linear and nonlinear entry dynamics. The Apollo-trained controller is then applied to Mars entry missions. As in Earth environment, the controller achieves the desired level of accuracy for Mars missions using both linear and nonlinear entry dynamics with higher uncertainties in the entry states and the atmospheric density. The deep neural network is only trained with data from Apollo reentry simulation in an Earth model and works in both Earth and Mars environments. It achieves the desired landing accuracy for a Mars capsule. This method works with both linear and nonlinear integration and can generate the bank angle commands in real-time without a prestored trajectory.</description><subject>Accuracy</subject><subject>Aerospace engineering</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Atmosphere</subject><subject>Atmospheric density</subject><subject>Atmospheric entry</subject><subject>Computer simulation</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Deep learning</subject><subject>Earth</subject><subject>Earth environment</subject><subject>Earth models</subject><subject>Initial conditions</subject><subject>Machine learning</subject><subject>Mars environment</subject><subject>Mars missions</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Velocity</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0TtPwzAUBWALgQQUNmZkiRECdvxKxqgqD4nHQBmYLMe5hpQ0Dk6qqv8elyAYma51_enY0kHohJJLSoW4SklKrpjKmeJkBx1QmalE5Irv_p6l3EeHfb8gRBKhxAF6LfBzvewawKatcGHtKpgBcNH5pvHJPJi6hQo_Qlw3cQxrHz7w1LdDiAACdj7gBxN6XAxL33fvEGqLZ_F6c4T2nGl6OP6ZE_RyPZtPb5P7p5u7aXGfWJ7KIZGWUHBcpa60AhhTgpXWAQNJgMpKCuGkzEluDS9lVbKKUFPy0hBGhWMU2ATdjbmVNwvdhXppwkZ7U-vvhQ9v2oShtg1oxmglbA7UlopTy42Q0hFLMkddZmLcBJ2NWV3wnyvoB73wq9DG7-uUc55mkmcqqotR2eD7PoD7fZUSvS1Cb4vQP0VEfj7y97qtzLr-T5-OGqIBZ_50rJAwyb4AFxSRKQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Hao</creator><creator>Elgohary, Tarek A.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6587-4126</orcidid><orcidid>https://orcid.org/0000-0002-6901-2689</orcidid></search><sort><creationdate>2020</creationdate><title>A Simple and Accurate Apollo-Trained Neural Network Controller for Mars Atmospheric Entry</title><author>Wang, Hao ; Elgohary, Tarek A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Aerospace engineering</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Atmosphere</topic><topic>Atmospheric density</topic><topic>Atmospheric entry</topic><topic>Computer simulation</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Deep learning</topic><topic>Earth</topic><topic>Earth environment</topic><topic>Earth models</topic><topic>Initial conditions</topic><topic>Machine learning</topic><topic>Mars environment</topic><topic>Mars missions</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Elgohary, Tarek A.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>International journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hao</au><au>Elgohary, Tarek A.</au><au>Biggs, James D.</au><au>James D Biggs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple and Accurate Apollo-Trained Neural Network Controller for Mars Atmospheric Entry</atitle><jtitle>International journal of aerospace engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>We present a new method to design the controller for Mars capsule atmospheric entry using deep neural networks and flight-proven Apollo entry data. The controller is trained to modulate the bank angle with data from the Apollo entry simulations. The neural network controller reproduces the classical Apollo results over a variation of entry state initial conditions. Compared to the Apollo controller as a baseline, the present approach achieves the same level of accuracy for both linear and nonlinear entry dynamics. The Apollo-trained controller is then applied to Mars entry missions. As in Earth environment, the controller achieves the desired level of accuracy for Mars missions using both linear and nonlinear entry dynamics with higher uncertainties in the entry states and the atmospheric density. The deep neural network is only trained with data from Apollo reentry simulation in an Earth model and works in both Earth and Mars environments. It achieves the desired landing accuracy for a Mars capsule. This method works with both linear and nonlinear integration and can generate the bank angle commands in real-time without a prestored trajectory.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3793740</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6587-4126</orcidid><orcidid>https://orcid.org/0000-0002-6901-2689</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5966
ispartof International journal of aerospace engineering, 2020, Vol.2020 (2020), p.1-15
issn 1687-5966
1687-5974
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_331d5c9e1cb741c4a566f0c08f1f8a5f
source Publicly Available Content Database; Wiley Open Access
subjects Accuracy
Aerospace engineering
Algorithms
Artificial neural networks
Atmosphere
Atmospheric density
Atmospheric entry
Computer simulation
Control systems design
Controllers
Deep learning
Earth
Earth environment
Earth models
Initial conditions
Machine learning
Mars environment
Mars missions
Methods
Neural networks
Nonlinear dynamics
Velocity
title A Simple and Accurate Apollo-Trained Neural Network Controller for Mars Atmospheric Entry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20and%20Accurate%20Apollo-Trained%20Neural%20Network%20Controller%20for%20Mars%20Atmospheric%20Entry&rft.jtitle=International%20journal%20of%20aerospace%20engineering&rft.au=Wang,%20Hao&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2020/3793740&rft_dat=%3Cproquest_doaj_%3E2444286487%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444286487&rft_id=info:pmid/&rfr_iscdi=true