Loading…
A Simple and Accurate Apollo-Trained Neural Network Controller for Mars Atmospheric Entry
We present a new method to design the controller for Mars capsule atmospheric entry using deep neural networks and flight-proven Apollo entry data. The controller is trained to modulate the bank angle with data from the Apollo entry simulations. The neural network controller reproduces the classical...
Saved in:
Published in: | International journal of aerospace engineering 2020, Vol.2020 (2020), p.1-15 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3 |
container_end_page | 15 |
container_issue | 2020 |
container_start_page | 1 |
container_title | International journal of aerospace engineering |
container_volume | 2020 |
creator | Wang, Hao Elgohary, Tarek A. |
description | We present a new method to design the controller for Mars capsule atmospheric entry using deep neural networks and flight-proven Apollo entry data. The controller is trained to modulate the bank angle with data from the Apollo entry simulations. The neural network controller reproduces the classical Apollo results over a variation of entry state initial conditions. Compared to the Apollo controller as a baseline, the present approach achieves the same level of accuracy for both linear and nonlinear entry dynamics. The Apollo-trained controller is then applied to Mars entry missions. As in Earth environment, the controller achieves the desired level of accuracy for Mars missions using both linear and nonlinear entry dynamics with higher uncertainties in the entry states and the atmospheric density. The deep neural network is only trained with data from Apollo reentry simulation in an Earth model and works in both Earth and Mars environments. It achieves the desired landing accuracy for a Mars capsule. This method works with both linear and nonlinear integration and can generate the bank angle commands in real-time without a prestored trajectory. |
doi_str_mv | 10.1155/2020/3793740 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_331d5c9e1cb741c4a566f0c08f1f8a5f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_331d5c9e1cb741c4a566f0c08f1f8a5f</doaj_id><sourcerecordid>2444286487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBWALgQQUNmZkiRECdvxKxqgqD4nHQBmYLMe5hpQ0Dk6qqv8elyAYma51_enY0kHohJJLSoW4SklKrpjKmeJkBx1QmalE5Irv_p6l3EeHfb8gRBKhxAF6LfBzvewawKatcGHtKpgBcNH5pvHJPJi6hQo_Qlw3cQxrHz7w1LdDiAACdj7gBxN6XAxL33fvEGqLZ_F6c4T2nGl6OP6ZE_RyPZtPb5P7p5u7aXGfWJ7KIZGWUHBcpa60AhhTgpXWAQNJgMpKCuGkzEluDS9lVbKKUFPy0hBGhWMU2ATdjbmVNwvdhXppwkZ7U-vvhQ9v2oShtg1oxmglbA7UlopTy42Q0hFLMkddZmLcBJ2NWV3wnyvoB73wq9DG7-uUc55mkmcqqotR2eD7PoD7fZUSvS1Cb4vQP0VEfj7y97qtzLr-T5-OGqIBZ_50rJAwyb4AFxSRKQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444286487</pqid></control><display><type>article</type><title>A Simple and Accurate Apollo-Trained Neural Network Controller for Mars Atmospheric Entry</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Wang, Hao ; Elgohary, Tarek A.</creator><contributor>Biggs, James D. ; James D Biggs</contributor><creatorcontrib>Wang, Hao ; Elgohary, Tarek A. ; Biggs, James D. ; James D Biggs</creatorcontrib><description>We present a new method to design the controller for Mars capsule atmospheric entry using deep neural networks and flight-proven Apollo entry data. The controller is trained to modulate the bank angle with data from the Apollo entry simulations. The neural network controller reproduces the classical Apollo results over a variation of entry state initial conditions. Compared to the Apollo controller as a baseline, the present approach achieves the same level of accuracy for both linear and nonlinear entry dynamics. The Apollo-trained controller is then applied to Mars entry missions. As in Earth environment, the controller achieves the desired level of accuracy for Mars missions using both linear and nonlinear entry dynamics with higher uncertainties in the entry states and the atmospheric density. The deep neural network is only trained with data from Apollo reentry simulation in an Earth model and works in both Earth and Mars environments. It achieves the desired landing accuracy for a Mars capsule. This method works with both linear and nonlinear integration and can generate the bank angle commands in real-time without a prestored trajectory.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2020/3793740</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Aerospace engineering ; Algorithms ; Artificial neural networks ; Atmosphere ; Atmospheric density ; Atmospheric entry ; Computer simulation ; Control systems design ; Controllers ; Deep learning ; Earth ; Earth environment ; Earth models ; Initial conditions ; Machine learning ; Mars environment ; Mars missions ; Methods ; Neural networks ; Nonlinear dynamics ; Velocity</subject><ispartof>International journal of aerospace engineering, 2020, Vol.2020 (2020), p.1-15</ispartof><rights>Copyright © 2020 Hao Wang and Tarek A. Elgohary.</rights><rights>Copyright © 2020 Hao Wang and Tarek A. Elgohary. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3</citedby><cites>FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3</cites><orcidid>0000-0002-6587-4126 ; 0000-0002-6901-2689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2444286487/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2444286487?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,74998</link.rule.ids></links><search><contributor>Biggs, James D.</contributor><contributor>James D Biggs</contributor><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Elgohary, Tarek A.</creatorcontrib><title>A Simple and Accurate Apollo-Trained Neural Network Controller for Mars Atmospheric Entry</title><title>International journal of aerospace engineering</title><description>We present a new method to design the controller for Mars capsule atmospheric entry using deep neural networks and flight-proven Apollo entry data. The controller is trained to modulate the bank angle with data from the Apollo entry simulations. The neural network controller reproduces the classical Apollo results over a variation of entry state initial conditions. Compared to the Apollo controller as a baseline, the present approach achieves the same level of accuracy for both linear and nonlinear entry dynamics. The Apollo-trained controller is then applied to Mars entry missions. As in Earth environment, the controller achieves the desired level of accuracy for Mars missions using both linear and nonlinear entry dynamics with higher uncertainties in the entry states and the atmospheric density. The deep neural network is only trained with data from Apollo reentry simulation in an Earth model and works in both Earth and Mars environments. It achieves the desired landing accuracy for a Mars capsule. This method works with both linear and nonlinear integration and can generate the bank angle commands in real-time without a prestored trajectory.</description><subject>Accuracy</subject><subject>Aerospace engineering</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Atmosphere</subject><subject>Atmospheric density</subject><subject>Atmospheric entry</subject><subject>Computer simulation</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Deep learning</subject><subject>Earth</subject><subject>Earth environment</subject><subject>Earth models</subject><subject>Initial conditions</subject><subject>Machine learning</subject><subject>Mars environment</subject><subject>Mars missions</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Velocity</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0TtPwzAUBWALgQQUNmZkiRECdvxKxqgqD4nHQBmYLMe5hpQ0Dk6qqv8elyAYma51_enY0kHohJJLSoW4SklKrpjKmeJkBx1QmalE5Irv_p6l3EeHfb8gRBKhxAF6LfBzvewawKatcGHtKpgBcNH5pvHJPJi6hQo_Qlw3cQxrHz7w1LdDiAACdj7gBxN6XAxL33fvEGqLZ_F6c4T2nGl6OP6ZE_RyPZtPb5P7p5u7aXGfWJ7KIZGWUHBcpa60AhhTgpXWAQNJgMpKCuGkzEluDS9lVbKKUFPy0hBGhWMU2ATdjbmVNwvdhXppwkZ7U-vvhQ9v2oShtg1oxmglbA7UlopTy42Q0hFLMkddZmLcBJ2NWV3wnyvoB73wq9DG7-uUc55mkmcqqotR2eD7PoD7fZUSvS1Cb4vQP0VEfj7y97qtzLr-T5-OGqIBZ_50rJAwyb4AFxSRKQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Hao</creator><creator>Elgohary, Tarek A.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6587-4126</orcidid><orcidid>https://orcid.org/0000-0002-6901-2689</orcidid></search><sort><creationdate>2020</creationdate><title>A Simple and Accurate Apollo-Trained Neural Network Controller for Mars Atmospheric Entry</title><author>Wang, Hao ; Elgohary, Tarek A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Aerospace engineering</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Atmosphere</topic><topic>Atmospheric density</topic><topic>Atmospheric entry</topic><topic>Computer simulation</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Deep learning</topic><topic>Earth</topic><topic>Earth environment</topic><topic>Earth models</topic><topic>Initial conditions</topic><topic>Machine learning</topic><topic>Mars environment</topic><topic>Mars missions</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Elgohary, Tarek A.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>International journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hao</au><au>Elgohary, Tarek A.</au><au>Biggs, James D.</au><au>James D Biggs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple and Accurate Apollo-Trained Neural Network Controller for Mars Atmospheric Entry</atitle><jtitle>International journal of aerospace engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>We present a new method to design the controller for Mars capsule atmospheric entry using deep neural networks and flight-proven Apollo entry data. The controller is trained to modulate the bank angle with data from the Apollo entry simulations. The neural network controller reproduces the classical Apollo results over a variation of entry state initial conditions. Compared to the Apollo controller as a baseline, the present approach achieves the same level of accuracy for both linear and nonlinear entry dynamics. The Apollo-trained controller is then applied to Mars entry missions. As in Earth environment, the controller achieves the desired level of accuracy for Mars missions using both linear and nonlinear entry dynamics with higher uncertainties in the entry states and the atmospheric density. The deep neural network is only trained with data from Apollo reentry simulation in an Earth model and works in both Earth and Mars environments. It achieves the desired landing accuracy for a Mars capsule. This method works with both linear and nonlinear integration and can generate the bank angle commands in real-time without a prestored trajectory.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3793740</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6587-4126</orcidid><orcidid>https://orcid.org/0000-0002-6901-2689</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5966 |
ispartof | International journal of aerospace engineering, 2020, Vol.2020 (2020), p.1-15 |
issn | 1687-5966 1687-5974 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_331d5c9e1cb741c4a566f0c08f1f8a5f |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Accuracy Aerospace engineering Algorithms Artificial neural networks Atmosphere Atmospheric density Atmospheric entry Computer simulation Control systems design Controllers Deep learning Earth Earth environment Earth models Initial conditions Machine learning Mars environment Mars missions Methods Neural networks Nonlinear dynamics Velocity |
title | A Simple and Accurate Apollo-Trained Neural Network Controller for Mars Atmospheric Entry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20and%20Accurate%20Apollo-Trained%20Neural%20Network%20Controller%20for%20Mars%20Atmospheric%20Entry&rft.jtitle=International%20journal%20of%20aerospace%20engineering&rft.au=Wang,%20Hao&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2020/3793740&rft_dat=%3Cproquest_doaj_%3E2444286487%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-6c01ef472fbc5e33753bcfe3e60e16d655f66909ca4b6db3d01ab4ba0315f31e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444286487&rft_id=info:pmid/&rfr_iscdi=true |