Loading…
Investigation of the Film-Cooling Performance of 2.5D Braided Ceramic Matrix Composite Plates with Preformed Hole
The film-cooling performance of a 2.5D braided ceramic matrix composite (CMC) plate with preformed holes was numerically studied. Four numerical models containing braided structures were established: one model with film-cooling holes preformed through fiber extrusion deformation (EP-Hole), one model...
Saved in:
Published in: | Aerospace 2021-04, Vol.8 (4), p.116 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3 |
container_end_page | |
container_issue | 4 |
container_start_page | 116 |
container_title | Aerospace |
container_volume | 8 |
creator | Zhao, Chenwei Tu, Zecan Mao, Junkui |
description | The film-cooling performance of a 2.5D braided ceramic matrix composite (CMC) plate with preformed holes was numerically studied. Four numerical models containing braided structures were established: one model with film-cooling holes preformed through fiber extrusion deformation (EP-Hole), one model with film-cooling holes directly woven through fibers (WP-Hole), and two models with directly drilled holes (DP-Hole1,2). Besides, the influence of the ratio between the equivalent thermal conductivities on the axial and radial directions of fiber Kr was investigated. The results show that the preformed holes have better performance in controlling the thermal gradient with the increase of Kr. The maximum thermal gradient around the DP-Hole is significantly higher than that of the WP-Hole and EP-Hole, and the maximum relative variation reaches 123.3%. With Kr increasing from 3.32 to 13.05, the overall cooling effectiveness on the hot-side wall decreases for all models, by about 10%. Compared with the traditional drill method, the new preformed film-cooling hole studied in this paper can reduce the temperature and the thermal gradient in the region around the holes. |
doi_str_mv | 10.3390/aerospace8040116 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_332392e4b7324be59ac2e6a0d11b1ad1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_332392e4b7324be59ac2e6a0d11b1ad1</doaj_id><sourcerecordid>2528293875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEUqu29x4tcU6xPXEcHyHQdqUi9gBna2xPtl4l8dZx-fj3ZNkKIeYyo5lXz4z9VtW14DcAhr9Dymk5oKeON1yI9lV1LqVs6wYEf_1PfVZdLcuer2EEdFydV0-b-TstJe6wxDSzNLDySOw2jlPdpzTGece2lIeUJ5w9HefyRn1kHzLGQIH1lHGKnn3GkuNP1qfpkJZYiG1HLLSwH7E8sm2mI2CV36eRLqs3A44LXb3ki-rb7aev_X398OVu079_qD1oU-qg_KABusF0WgZEp42DTrkBHdeKBmh8I0F7MNRSq7QUrRI8OAqh7RwgXFSbEzck3NtDjhPmXzZhtH8aKe8s5hL9SBZAgpHUOA2ycaQMekkt8iCEExjEynp7Yh1yenpe_8vu03Oe1_OtVLKTBjqtVhU_qfzqxrI--u9Wwe3RJ_u_T_AbJVWHmQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528293875</pqid></control><display><type>article</type><title>Investigation of the Film-Cooling Performance of 2.5D Braided Ceramic Matrix Composite Plates with Preformed Hole</title><source>Free E-Journal (出版社公開部分のみ)</source><source>ProQuest - Publicly Available Content Database</source><creator>Zhao, Chenwei ; Tu, Zecan ; Mao, Junkui</creator><creatorcontrib>Zhao, Chenwei ; Tu, Zecan ; Mao, Junkui</creatorcontrib><description>The film-cooling performance of a 2.5D braided ceramic matrix composite (CMC) plate with preformed holes was numerically studied. Four numerical models containing braided structures were established: one model with film-cooling holes preformed through fiber extrusion deformation (EP-Hole), one model with film-cooling holes directly woven through fibers (WP-Hole), and two models with directly drilled holes (DP-Hole1,2). Besides, the influence of the ratio between the equivalent thermal conductivities on the axial and radial directions of fiber Kr was investigated. The results show that the preformed holes have better performance in controlling the thermal gradient with the increase of Kr. The maximum thermal gradient around the DP-Hole is significantly higher than that of the WP-Hole and EP-Hole, and the maximum relative variation reaches 123.3%. With Kr increasing from 3.32 to 13.05, the overall cooling effectiveness on the hot-side wall decreases for all models, by about 10%. Compared with the traditional drill method, the new preformed film-cooling hole studied in this paper can reduce the temperature and the thermal gradient in the region around the holes.</description><identifier>ISSN: 2226-4310</identifier><identifier>EISSN: 2226-4310</identifier><identifier>DOI: 10.3390/aerospace8040116</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>2.5D braided composite ; anisotropic thermal conductivity ; Braided composites ; Braiding ; Ceramic matrix composites ; Composite materials ; Composite structures ; Cooling ; Extrusion ; film cooling ; Heat conductivity ; Heat resistance ; Heat transfer ; Investigations ; Manufacturing ; Mathematical models ; Mechanical properties ; Numerical models ; Oxidation ; preformed hole ; R&D ; Research & development ; Stress concentration ; Temperature ; Temperature gradients ; Yarn</subject><ispartof>Aerospace, 2021-04, Vol.8 (4), p.116</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3</citedby><cites>FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2528293875/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2528293875?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhao, Chenwei</creatorcontrib><creatorcontrib>Tu, Zecan</creatorcontrib><creatorcontrib>Mao, Junkui</creatorcontrib><title>Investigation of the Film-Cooling Performance of 2.5D Braided Ceramic Matrix Composite Plates with Preformed Hole</title><title>Aerospace</title><description>The film-cooling performance of a 2.5D braided ceramic matrix composite (CMC) plate with preformed holes was numerically studied. Four numerical models containing braided structures were established: one model with film-cooling holes preformed through fiber extrusion deformation (EP-Hole), one model with film-cooling holes directly woven through fibers (WP-Hole), and two models with directly drilled holes (DP-Hole1,2). Besides, the influence of the ratio between the equivalent thermal conductivities on the axial and radial directions of fiber Kr was investigated. The results show that the preformed holes have better performance in controlling the thermal gradient with the increase of Kr. The maximum thermal gradient around the DP-Hole is significantly higher than that of the WP-Hole and EP-Hole, and the maximum relative variation reaches 123.3%. With Kr increasing from 3.32 to 13.05, the overall cooling effectiveness on the hot-side wall decreases for all models, by about 10%. Compared with the traditional drill method, the new preformed film-cooling hole studied in this paper can reduce the temperature and the thermal gradient in the region around the holes.</description><subject>2.5D braided composite</subject><subject>anisotropic thermal conductivity</subject><subject>Braided composites</subject><subject>Braiding</subject><subject>Ceramic matrix composites</subject><subject>Composite materials</subject><subject>Composite structures</subject><subject>Cooling</subject><subject>Extrusion</subject><subject>film cooling</subject><subject>Heat conductivity</subject><subject>Heat resistance</subject><subject>Heat transfer</subject><subject>Investigations</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Numerical models</subject><subject>Oxidation</subject><subject>preformed hole</subject><subject>R&D</subject><subject>Research & development</subject><subject>Stress concentration</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Yarn</subject><issn>2226-4310</issn><issn>2226-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1v1DAQhiMEUqu29x4tcU6xPXEcHyHQdqUi9gBna2xPtl4l8dZx-fj3ZNkKIeYyo5lXz4z9VtW14DcAhr9Dymk5oKeON1yI9lV1LqVs6wYEf_1PfVZdLcuer2EEdFydV0-b-TstJe6wxDSzNLDySOw2jlPdpzTGece2lIeUJ5w9HefyRn1kHzLGQIH1lHGKnn3GkuNP1qfpkJZYiG1HLLSwH7E8sm2mI2CV36eRLqs3A44LXb3ki-rb7aev_X398OVu079_qD1oU-qg_KABusF0WgZEp42DTrkBHdeKBmh8I0F7MNRSq7QUrRI8OAqh7RwgXFSbEzck3NtDjhPmXzZhtH8aKe8s5hL9SBZAgpHUOA2ycaQMekkt8iCEExjEynp7Yh1yenpe_8vu03Oe1_OtVLKTBjqtVhU_qfzqxrI--u9Wwe3RJ_u_T_AbJVWHmQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zhao, Chenwei</creator><creator>Tu, Zecan</creator><creator>Mao, Junkui</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20210401</creationdate><title>Investigation of the Film-Cooling Performance of 2.5D Braided Ceramic Matrix Composite Plates with Preformed Hole</title><author>Zhao, Chenwei ; Tu, Zecan ; Mao, Junkui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2.5D braided composite</topic><topic>anisotropic thermal conductivity</topic><topic>Braided composites</topic><topic>Braiding</topic><topic>Ceramic matrix composites</topic><topic>Composite materials</topic><topic>Composite structures</topic><topic>Cooling</topic><topic>Extrusion</topic><topic>film cooling</topic><topic>Heat conductivity</topic><topic>Heat resistance</topic><topic>Heat transfer</topic><topic>Investigations</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Numerical models</topic><topic>Oxidation</topic><topic>preformed hole</topic><topic>R&D</topic><topic>Research & development</topic><topic>Stress concentration</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Yarn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chenwei</creatorcontrib><creatorcontrib>Tu, Zecan</creatorcontrib><creatorcontrib>Mao, Junkui</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>Aerospace</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chenwei</au><au>Tu, Zecan</au><au>Mao, Junkui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the Film-Cooling Performance of 2.5D Braided Ceramic Matrix Composite Plates with Preformed Hole</atitle><jtitle>Aerospace</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>8</volume><issue>4</issue><spage>116</spage><pages>116-</pages><issn>2226-4310</issn><eissn>2226-4310</eissn><abstract>The film-cooling performance of a 2.5D braided ceramic matrix composite (CMC) plate with preformed holes was numerically studied. Four numerical models containing braided structures were established: one model with film-cooling holes preformed through fiber extrusion deformation (EP-Hole), one model with film-cooling holes directly woven through fibers (WP-Hole), and two models with directly drilled holes (DP-Hole1,2). Besides, the influence of the ratio between the equivalent thermal conductivities on the axial and radial directions of fiber Kr was investigated. The results show that the preformed holes have better performance in controlling the thermal gradient with the increase of Kr. The maximum thermal gradient around the DP-Hole is significantly higher than that of the WP-Hole and EP-Hole, and the maximum relative variation reaches 123.3%. With Kr increasing from 3.32 to 13.05, the overall cooling effectiveness on the hot-side wall decreases for all models, by about 10%. Compared with the traditional drill method, the new preformed film-cooling hole studied in this paper can reduce the temperature and the thermal gradient in the region around the holes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/aerospace8040116</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2226-4310 |
ispartof | Aerospace, 2021-04, Vol.8 (4), p.116 |
issn | 2226-4310 2226-4310 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_332392e4b7324be59ac2e6a0d11b1ad1 |
source | Free E-Journal (出版社公開部分のみ); ProQuest - Publicly Available Content Database |
subjects | 2.5D braided composite anisotropic thermal conductivity Braided composites Braiding Ceramic matrix composites Composite materials Composite structures Cooling Extrusion film cooling Heat conductivity Heat resistance Heat transfer Investigations Manufacturing Mathematical models Mechanical properties Numerical models Oxidation preformed hole R&D Research & development Stress concentration Temperature Temperature gradients Yarn |
title | Investigation of the Film-Cooling Performance of 2.5D Braided Ceramic Matrix Composite Plates with Preformed Hole |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20Film-Cooling%20Performance%20of%202.5D%20Braided%20Ceramic%20Matrix%20Composite%20Plates%20with%20Preformed%20Hole&rft.jtitle=Aerospace&rft.au=Zhao,%20Chenwei&rft.date=2021-04-01&rft.volume=8&rft.issue=4&rft.spage=116&rft.pages=116-&rft.issn=2226-4310&rft.eissn=2226-4310&rft_id=info:doi/10.3390/aerospace8040116&rft_dat=%3Cproquest_doaj_%3E2528293875%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528293875&rft_id=info:pmid/&rfr_iscdi=true |