Loading…

Investigation of the Film-Cooling Performance of 2.5D Braided Ceramic Matrix Composite Plates with Preformed Hole

The film-cooling performance of a 2.5D braided ceramic matrix composite (CMC) plate with preformed holes was numerically studied. Four numerical models containing braided structures were established: one model with film-cooling holes preformed through fiber extrusion deformation (EP-Hole), one model...

Full description

Saved in:
Bibliographic Details
Published in:Aerospace 2021-04, Vol.8 (4), p.116
Main Authors: Zhao, Chenwei, Tu, Zecan, Mao, Junkui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3
cites cdi_FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3
container_end_page
container_issue 4
container_start_page 116
container_title Aerospace
container_volume 8
creator Zhao, Chenwei
Tu, Zecan
Mao, Junkui
description The film-cooling performance of a 2.5D braided ceramic matrix composite (CMC) plate with preformed holes was numerically studied. Four numerical models containing braided structures were established: one model with film-cooling holes preformed through fiber extrusion deformation (EP-Hole), one model with film-cooling holes directly woven through fibers (WP-Hole), and two models with directly drilled holes (DP-Hole1,2). Besides, the influence of the ratio between the equivalent thermal conductivities on the axial and radial directions of fiber Kr was investigated. The results show that the preformed holes have better performance in controlling the thermal gradient with the increase of Kr. The maximum thermal gradient around the DP-Hole is significantly higher than that of the WP-Hole and EP-Hole, and the maximum relative variation reaches 123.3%. With Kr increasing from 3.32 to 13.05, the overall cooling effectiveness on the hot-side wall decreases for all models, by about 10%. Compared with the traditional drill method, the new preformed film-cooling hole studied in this paper can reduce the temperature and the thermal gradient in the region around the holes.
doi_str_mv 10.3390/aerospace8040116
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_332392e4b7324be59ac2e6a0d11b1ad1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_332392e4b7324be59ac2e6a0d11b1ad1</doaj_id><sourcerecordid>2528293875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEUqu29x4tcU6xPXEcHyHQdqUi9gBna2xPtl4l8dZx-fj3ZNkKIeYyo5lXz4z9VtW14DcAhr9Dymk5oKeON1yI9lV1LqVs6wYEf_1PfVZdLcuer2EEdFydV0-b-TstJe6wxDSzNLDySOw2jlPdpzTGece2lIeUJ5w9HefyRn1kHzLGQIH1lHGKnn3GkuNP1qfpkJZYiG1HLLSwH7E8sm2mI2CV36eRLqs3A44LXb3ki-rb7aev_X398OVu079_qD1oU-qg_KABusF0WgZEp42DTrkBHdeKBmh8I0F7MNRSq7QUrRI8OAqh7RwgXFSbEzck3NtDjhPmXzZhtH8aKe8s5hL9SBZAgpHUOA2ycaQMekkt8iCEExjEynp7Yh1yenpe_8vu03Oe1_OtVLKTBjqtVhU_qfzqxrI--u9Wwe3RJ_u_T_AbJVWHmQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528293875</pqid></control><display><type>article</type><title>Investigation of the Film-Cooling Performance of 2.5D Braided Ceramic Matrix Composite Plates with Preformed Hole</title><source>Free E-Journal (出版社公開部分のみ)</source><source>ProQuest - Publicly Available Content Database</source><creator>Zhao, Chenwei ; Tu, Zecan ; Mao, Junkui</creator><creatorcontrib>Zhao, Chenwei ; Tu, Zecan ; Mao, Junkui</creatorcontrib><description>The film-cooling performance of a 2.5D braided ceramic matrix composite (CMC) plate with preformed holes was numerically studied. Four numerical models containing braided structures were established: one model with film-cooling holes preformed through fiber extrusion deformation (EP-Hole), one model with film-cooling holes directly woven through fibers (WP-Hole), and two models with directly drilled holes (DP-Hole1,2). Besides, the influence of the ratio between the equivalent thermal conductivities on the axial and radial directions of fiber Kr was investigated. The results show that the preformed holes have better performance in controlling the thermal gradient with the increase of Kr. The maximum thermal gradient around the DP-Hole is significantly higher than that of the WP-Hole and EP-Hole, and the maximum relative variation reaches 123.3%. With Kr increasing from 3.32 to 13.05, the overall cooling effectiveness on the hot-side wall decreases for all models, by about 10%. Compared with the traditional drill method, the new preformed film-cooling hole studied in this paper can reduce the temperature and the thermal gradient in the region around the holes.</description><identifier>ISSN: 2226-4310</identifier><identifier>EISSN: 2226-4310</identifier><identifier>DOI: 10.3390/aerospace8040116</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>2.5D braided composite ; anisotropic thermal conductivity ; Braided composites ; Braiding ; Ceramic matrix composites ; Composite materials ; Composite structures ; Cooling ; Extrusion ; film cooling ; Heat conductivity ; Heat resistance ; Heat transfer ; Investigations ; Manufacturing ; Mathematical models ; Mechanical properties ; Numerical models ; Oxidation ; preformed hole ; R&amp;D ; Research &amp; development ; Stress concentration ; Temperature ; Temperature gradients ; Yarn</subject><ispartof>Aerospace, 2021-04, Vol.8 (4), p.116</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3</citedby><cites>FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2528293875/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2528293875?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhao, Chenwei</creatorcontrib><creatorcontrib>Tu, Zecan</creatorcontrib><creatorcontrib>Mao, Junkui</creatorcontrib><title>Investigation of the Film-Cooling Performance of 2.5D Braided Ceramic Matrix Composite Plates with Preformed Hole</title><title>Aerospace</title><description>The film-cooling performance of a 2.5D braided ceramic matrix composite (CMC) plate with preformed holes was numerically studied. Four numerical models containing braided structures were established: one model with film-cooling holes preformed through fiber extrusion deformation (EP-Hole), one model with film-cooling holes directly woven through fibers (WP-Hole), and two models with directly drilled holes (DP-Hole1,2). Besides, the influence of the ratio between the equivalent thermal conductivities on the axial and radial directions of fiber Kr was investigated. The results show that the preformed holes have better performance in controlling the thermal gradient with the increase of Kr. The maximum thermal gradient around the DP-Hole is significantly higher than that of the WP-Hole and EP-Hole, and the maximum relative variation reaches 123.3%. With Kr increasing from 3.32 to 13.05, the overall cooling effectiveness on the hot-side wall decreases for all models, by about 10%. Compared with the traditional drill method, the new preformed film-cooling hole studied in this paper can reduce the temperature and the thermal gradient in the region around the holes.</description><subject>2.5D braided composite</subject><subject>anisotropic thermal conductivity</subject><subject>Braided composites</subject><subject>Braiding</subject><subject>Ceramic matrix composites</subject><subject>Composite materials</subject><subject>Composite structures</subject><subject>Cooling</subject><subject>Extrusion</subject><subject>film cooling</subject><subject>Heat conductivity</subject><subject>Heat resistance</subject><subject>Heat transfer</subject><subject>Investigations</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Numerical models</subject><subject>Oxidation</subject><subject>preformed hole</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Stress concentration</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Yarn</subject><issn>2226-4310</issn><issn>2226-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1v1DAQhiMEUqu29x4tcU6xPXEcHyHQdqUi9gBna2xPtl4l8dZx-fj3ZNkKIeYyo5lXz4z9VtW14DcAhr9Dymk5oKeON1yI9lV1LqVs6wYEf_1PfVZdLcuer2EEdFydV0-b-TstJe6wxDSzNLDySOw2jlPdpzTGece2lIeUJ5w9HefyRn1kHzLGQIH1lHGKnn3GkuNP1qfpkJZYiG1HLLSwH7E8sm2mI2CV36eRLqs3A44LXb3ki-rb7aev_X398OVu079_qD1oU-qg_KABusF0WgZEp42DTrkBHdeKBmh8I0F7MNRSq7QUrRI8OAqh7RwgXFSbEzck3NtDjhPmXzZhtH8aKe8s5hL9SBZAgpHUOA2ycaQMekkt8iCEExjEynp7Yh1yenpe_8vu03Oe1_OtVLKTBjqtVhU_qfzqxrI--u9Wwe3RJ_u_T_AbJVWHmQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zhao, Chenwei</creator><creator>Tu, Zecan</creator><creator>Mao, Junkui</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20210401</creationdate><title>Investigation of the Film-Cooling Performance of 2.5D Braided Ceramic Matrix Composite Plates with Preformed Hole</title><author>Zhao, Chenwei ; Tu, Zecan ; Mao, Junkui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2.5D braided composite</topic><topic>anisotropic thermal conductivity</topic><topic>Braided composites</topic><topic>Braiding</topic><topic>Ceramic matrix composites</topic><topic>Composite materials</topic><topic>Composite structures</topic><topic>Cooling</topic><topic>Extrusion</topic><topic>film cooling</topic><topic>Heat conductivity</topic><topic>Heat resistance</topic><topic>Heat transfer</topic><topic>Investigations</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Numerical models</topic><topic>Oxidation</topic><topic>preformed hole</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Stress concentration</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Yarn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chenwei</creatorcontrib><creatorcontrib>Tu, Zecan</creatorcontrib><creatorcontrib>Mao, Junkui</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>Aerospace</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chenwei</au><au>Tu, Zecan</au><au>Mao, Junkui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the Film-Cooling Performance of 2.5D Braided Ceramic Matrix Composite Plates with Preformed Hole</atitle><jtitle>Aerospace</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>8</volume><issue>4</issue><spage>116</spage><pages>116-</pages><issn>2226-4310</issn><eissn>2226-4310</eissn><abstract>The film-cooling performance of a 2.5D braided ceramic matrix composite (CMC) plate with preformed holes was numerically studied. Four numerical models containing braided structures were established: one model with film-cooling holes preformed through fiber extrusion deformation (EP-Hole), one model with film-cooling holes directly woven through fibers (WP-Hole), and two models with directly drilled holes (DP-Hole1,2). Besides, the influence of the ratio between the equivalent thermal conductivities on the axial and radial directions of fiber Kr was investigated. The results show that the preformed holes have better performance in controlling the thermal gradient with the increase of Kr. The maximum thermal gradient around the DP-Hole is significantly higher than that of the WP-Hole and EP-Hole, and the maximum relative variation reaches 123.3%. With Kr increasing from 3.32 to 13.05, the overall cooling effectiveness on the hot-side wall decreases for all models, by about 10%. Compared with the traditional drill method, the new preformed film-cooling hole studied in this paper can reduce the temperature and the thermal gradient in the region around the holes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/aerospace8040116</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2226-4310
ispartof Aerospace, 2021-04, Vol.8 (4), p.116
issn 2226-4310
2226-4310
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_332392e4b7324be59ac2e6a0d11b1ad1
source Free E-Journal (出版社公開部分のみ); ProQuest - Publicly Available Content Database
subjects 2.5D braided composite
anisotropic thermal conductivity
Braided composites
Braiding
Ceramic matrix composites
Composite materials
Composite structures
Cooling
Extrusion
film cooling
Heat conductivity
Heat resistance
Heat transfer
Investigations
Manufacturing
Mathematical models
Mechanical properties
Numerical models
Oxidation
preformed hole
R&D
Research & development
Stress concentration
Temperature
Temperature gradients
Yarn
title Investigation of the Film-Cooling Performance of 2.5D Braided Ceramic Matrix Composite Plates with Preformed Hole
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20Film-Cooling%20Performance%20of%202.5D%20Braided%20Ceramic%20Matrix%20Composite%20Plates%20with%20Preformed%20Hole&rft.jtitle=Aerospace&rft.au=Zhao,%20Chenwei&rft.date=2021-04-01&rft.volume=8&rft.issue=4&rft.spage=116&rft.pages=116-&rft.issn=2226-4310&rft.eissn=2226-4310&rft_id=info:doi/10.3390/aerospace8040116&rft_dat=%3Cproquest_doaj_%3E2528293875%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-d5cf7338f9872daab79b385bfab075ef34c4237c39e6e657216510dbedd68b3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528293875&rft_id=info:pmid/&rfr_iscdi=true