Loading…

Numerical Analysis of Space Deployable Structure Based on Shape Memory Polymers

Shape memory polymers (SMPs) have been applied in aerospace engineering as deployable space structures. In this work, the coupled finite element method (FEM) was established based on the generalized Maxwell model and the time–temperature equivalence principle (TTEP). The thermodynamic behavior and s...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2021-07, Vol.12 (7), p.833
Main Authors: He, Zepeng, Shi, Yang, Feng, Xiangchao, Li, Zhen, Zhang, Yan, Dai, Chunai, Wang, Pengfei, Zhao, Liangyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-cbb2c7afc7632cea244c5a83e84cc8e6ee9c96380c1481f4b0e88ef824a7e89e3
cites cdi_FETCH-LOGICAL-c449t-cbb2c7afc7632cea244c5a83e84cc8e6ee9c96380c1481f4b0e88ef824a7e89e3
container_end_page
container_issue 7
container_start_page 833
container_title Micromachines (Basel)
container_volume 12
creator He, Zepeng
Shi, Yang
Feng, Xiangchao
Li, Zhen
Zhang, Yan
Dai, Chunai
Wang, Pengfei
Zhao, Liangyu
description Shape memory polymers (SMPs) have been applied in aerospace engineering as deployable space structures. In this work, the coupled finite element method (FEM) was established based on the generalized Maxwell model and the time–temperature equivalence principle (TTEP). The thermodynamic behavior and shape memory effects of a single-arm deployment structure (F-DS) and four-arm deployment structure (F-DS) based on SMPs were analyzed using the coupled FEM. Good consistency was obtained between the experimental data and simulation data for the tensile and S-DS recovery forces, verifying that the coupled FEM can accurately and reliably describe the thermodynamic behavior and shape memory effects of the SMP structure. The step-by-step driving structure is suitable for use as a large-scale deployment structure in space. This coupled FEM provides a new direction for future research on epoxy SMPs.
doi_str_mv 10.3390/mi12070833
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3394c7db20cf49caad7498b34c0e9a67</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3394c7db20cf49caad7498b34c0e9a67</doaj_id><sourcerecordid>2554611781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-cbb2c7afc7632cea244c5a83e84cc8e6ee9c96380c1481f4b0e88ef824a7e89e3</originalsourceid><addsrcrecordid>eNpdkV1rFTEQhhdRbKm98RcEvBHh1GyS3SQ3Qq1WC9UKR8G7MDs72-4hu9kmu8L-e9Oeota5mBlmXh7moyhelvxESsvfDn0puOZGyifFYc7Epq7rn0__yQ-K45R2PJvWNrvnxYFUstJCycPi6usyUOwRPDsdwa-pTyx0bDsBEvtAkw8rNJ7Ydo4Lzksk9h4StSyMbHsDE7EvNIS4sm_BrxmUXhTPOvCJjh_iUfHj_OP3s8-by6tPF2enlxtUys4bbBqBGjrUtRRIIJTCCowkoxAN1UQWbS0Nx1KZslMNJ2OoM0KBJmNJHhUXe24bYOem2A8QVxegd_eFEK8dxLlHTy6fSaFuG8GxUxYBWq2saaRCThZqnVnv9qxpaQZqkcY5gn8EfdwZ-xt3HX45I7myqsyA1w-AGG4XSrMb-oTkPYwUluREVVklKqtllr76T7oLS8yXv1epuiy1uQO-2aswhpQidX-GKfndPtz9fbv8DerRnnQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554611781</pqid></control><display><type>article</type><title>Numerical Analysis of Space Deployable Structure Based on Shape Memory Polymers</title><source>Publicly Available Content Database</source><source>PMC (PubMed Central)</source><creator>He, Zepeng ; Shi, Yang ; Feng, Xiangchao ; Li, Zhen ; Zhang, Yan ; Dai, Chunai ; Wang, Pengfei ; Zhao, Liangyu</creator><creatorcontrib>He, Zepeng ; Shi, Yang ; Feng, Xiangchao ; Li, Zhen ; Zhang, Yan ; Dai, Chunai ; Wang, Pengfei ; Zhao, Liangyu</creatorcontrib><description>Shape memory polymers (SMPs) have been applied in aerospace engineering as deployable space structures. In this work, the coupled finite element method (FEM) was established based on the generalized Maxwell model and the time–temperature equivalence principle (TTEP). The thermodynamic behavior and shape memory effects of a single-arm deployment structure (F-DS) and four-arm deployment structure (F-DS) based on SMPs were analyzed using the coupled FEM. Good consistency was obtained between the experimental data and simulation data for the tensile and S-DS recovery forces, verifying that the coupled FEM can accurately and reliably describe the thermodynamic behavior and shape memory effects of the SMP structure. The step-by-step driving structure is suitable for use as a large-scale deployment structure in space. This coupled FEM provides a new direction for future research on epoxy SMPs.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi12070833</identifier><identifier>PMID: 34357243</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerospace engineering ; Biocompatibility ; Deployable structures ; Epoxy resins ; Equivalence principle ; Finite element method ; Laboratories ; Mechanical properties ; Numerical analysis ; Phase transitions ; Polymers ; Sample size ; Shape effects ; Shape memory ; shape memory characteristics ; shape memory polymers ; space structure ; Temperature ; Thermodynamic properties ; time–temperature equivalence principle ; Viscoelasticity</subject><ispartof>Micromachines (Basel), 2021-07, Vol.12 (7), p.833</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-cbb2c7afc7632cea244c5a83e84cc8e6ee9c96380c1481f4b0e88ef824a7e89e3</citedby><cites>FETCH-LOGICAL-c449t-cbb2c7afc7632cea244c5a83e84cc8e6ee9c96380c1481f4b0e88ef824a7e89e3</cites><orcidid>0000-0003-4180-1069 ; 0000-0003-4513-2528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554611781/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554611781?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>He, Zepeng</creatorcontrib><creatorcontrib>Shi, Yang</creatorcontrib><creatorcontrib>Feng, Xiangchao</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Dai, Chunai</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Zhao, Liangyu</creatorcontrib><title>Numerical Analysis of Space Deployable Structure Based on Shape Memory Polymers</title><title>Micromachines (Basel)</title><description>Shape memory polymers (SMPs) have been applied in aerospace engineering as deployable space structures. In this work, the coupled finite element method (FEM) was established based on the generalized Maxwell model and the time–temperature equivalence principle (TTEP). The thermodynamic behavior and shape memory effects of a single-arm deployment structure (F-DS) and four-arm deployment structure (F-DS) based on SMPs were analyzed using the coupled FEM. Good consistency was obtained between the experimental data and simulation data for the tensile and S-DS recovery forces, verifying that the coupled FEM can accurately and reliably describe the thermodynamic behavior and shape memory effects of the SMP structure. The step-by-step driving structure is suitable for use as a large-scale deployment structure in space. This coupled FEM provides a new direction for future research on epoxy SMPs.</description><subject>Aerospace engineering</subject><subject>Biocompatibility</subject><subject>Deployable structures</subject><subject>Epoxy resins</subject><subject>Equivalence principle</subject><subject>Finite element method</subject><subject>Laboratories</subject><subject>Mechanical properties</subject><subject>Numerical analysis</subject><subject>Phase transitions</subject><subject>Polymers</subject><subject>Sample size</subject><subject>Shape effects</subject><subject>Shape memory</subject><subject>shape memory characteristics</subject><subject>shape memory polymers</subject><subject>space structure</subject><subject>Temperature</subject><subject>Thermodynamic properties</subject><subject>time–temperature equivalence principle</subject><subject>Viscoelasticity</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV1rFTEQhhdRbKm98RcEvBHh1GyS3SQ3Qq1WC9UKR8G7MDs72-4hu9kmu8L-e9Oeota5mBlmXh7moyhelvxESsvfDn0puOZGyifFYc7Epq7rn0__yQ-K45R2PJvWNrvnxYFUstJCycPi6usyUOwRPDsdwa-pTyx0bDsBEvtAkw8rNJ7Ydo4Lzksk9h4StSyMbHsDE7EvNIS4sm_BrxmUXhTPOvCJjh_iUfHj_OP3s8-by6tPF2enlxtUys4bbBqBGjrUtRRIIJTCCowkoxAN1UQWbS0Nx1KZslMNJ2OoM0KBJmNJHhUXe24bYOem2A8QVxegd_eFEK8dxLlHTy6fSaFuG8GxUxYBWq2saaRCThZqnVnv9qxpaQZqkcY5gn8EfdwZ-xt3HX45I7myqsyA1w-AGG4XSrMb-oTkPYwUluREVVklKqtllr76T7oLS8yXv1epuiy1uQO-2aswhpQidX-GKfndPtz9fbv8DerRnnQ</recordid><startdate>20210717</startdate><enddate>20210717</enddate><creator>He, Zepeng</creator><creator>Shi, Yang</creator><creator>Feng, Xiangchao</creator><creator>Li, Zhen</creator><creator>Zhang, Yan</creator><creator>Dai, Chunai</creator><creator>Wang, Pengfei</creator><creator>Zhao, Liangyu</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4180-1069</orcidid><orcidid>https://orcid.org/0000-0003-4513-2528</orcidid></search><sort><creationdate>20210717</creationdate><title>Numerical Analysis of Space Deployable Structure Based on Shape Memory Polymers</title><author>He, Zepeng ; Shi, Yang ; Feng, Xiangchao ; Li, Zhen ; Zhang, Yan ; Dai, Chunai ; Wang, Pengfei ; Zhao, Liangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-cbb2c7afc7632cea244c5a83e84cc8e6ee9c96380c1481f4b0e88ef824a7e89e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace engineering</topic><topic>Biocompatibility</topic><topic>Deployable structures</topic><topic>Epoxy resins</topic><topic>Equivalence principle</topic><topic>Finite element method</topic><topic>Laboratories</topic><topic>Mechanical properties</topic><topic>Numerical analysis</topic><topic>Phase transitions</topic><topic>Polymers</topic><topic>Sample size</topic><topic>Shape effects</topic><topic>Shape memory</topic><topic>shape memory characteristics</topic><topic>shape memory polymers</topic><topic>space structure</topic><topic>Temperature</topic><topic>Thermodynamic properties</topic><topic>time–temperature equivalence principle</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zepeng</creatorcontrib><creatorcontrib>Shi, Yang</creatorcontrib><creatorcontrib>Feng, Xiangchao</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Dai, Chunai</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Zhao, Liangyu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Zepeng</au><au>Shi, Yang</au><au>Feng, Xiangchao</au><au>Li, Zhen</au><au>Zhang, Yan</au><au>Dai, Chunai</au><au>Wang, Pengfei</au><au>Zhao, Liangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Analysis of Space Deployable Structure Based on Shape Memory Polymers</atitle><jtitle>Micromachines (Basel)</jtitle><date>2021-07-17</date><risdate>2021</risdate><volume>12</volume><issue>7</issue><spage>833</spage><pages>833-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>Shape memory polymers (SMPs) have been applied in aerospace engineering as deployable space structures. In this work, the coupled finite element method (FEM) was established based on the generalized Maxwell model and the time–temperature equivalence principle (TTEP). The thermodynamic behavior and shape memory effects of a single-arm deployment structure (F-DS) and four-arm deployment structure (F-DS) based on SMPs were analyzed using the coupled FEM. Good consistency was obtained between the experimental data and simulation data for the tensile and S-DS recovery forces, verifying that the coupled FEM can accurately and reliably describe the thermodynamic behavior and shape memory effects of the SMP structure. The step-by-step driving structure is suitable for use as a large-scale deployment structure in space. This coupled FEM provides a new direction for future research on epoxy SMPs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34357243</pmid><doi>10.3390/mi12070833</doi><orcidid>https://orcid.org/0000-0003-4180-1069</orcidid><orcidid>https://orcid.org/0000-0003-4513-2528</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2021-07, Vol.12 (7), p.833
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3394c7db20cf49caad7498b34c0e9a67
source Publicly Available Content Database; PMC (PubMed Central)
subjects Aerospace engineering
Biocompatibility
Deployable structures
Epoxy resins
Equivalence principle
Finite element method
Laboratories
Mechanical properties
Numerical analysis
Phase transitions
Polymers
Sample size
Shape effects
Shape memory
shape memory characteristics
shape memory polymers
space structure
Temperature
Thermodynamic properties
time–temperature equivalence principle
Viscoelasticity
title Numerical Analysis of Space Deployable Structure Based on Shape Memory Polymers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Analysis%20of%20Space%20Deployable%20Structure%20Based%20on%20Shape%20Memory%20Polymers&rft.jtitle=Micromachines%20(Basel)&rft.au=He,%20Zepeng&rft.date=2021-07-17&rft.volume=12&rft.issue=7&rft.spage=833&rft.pages=833-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi12070833&rft_dat=%3Cproquest_doaj_%3E2554611781%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-cbb2c7afc7632cea244c5a83e84cc8e6ee9c96380c1481f4b0e88ef824a7e89e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554611781&rft_id=info:pmid/34357243&rfr_iscdi=true