Loading…
Scaffold-mediated gating of Cdc42 signalling flux
Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an under...
Saved in:
Published in: | eLife 2017-03, Vol.6 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 6 |
creator | Rapali, Péter Mitteau, Romain Braun, Craig Massoni-Laporte, Aurèlie Ünlü, Caner Bataille, Laure Arramon, Floriane Saint Gygi, Steven P McCusker, Derek |
description | Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an underlying mechanism. Here, we find that Bem1 directly augments the guanine exchange factor (GEF) activity of Cdc24. Bem1 also increases GEF phosphorylation by the p21-activated kinase (PAK), Cla4. Phosphorylation abrogates the scaffold-dependent stimulation of GEF activity, rendering Cdc24 insensitive to additional Bem1. Thus, Bem1 stimulates GEF activity in a reversible fashion, contributing to signalling flux through Cdc42. The contribution of Bem1 to GTPase dynamics was borne-out by in vivo imaging: active Cdc42 was enriched at the cell pole in hypophosphorylated cdc24 mutants, while hyperphosphorylated cdc24 mutants that were resistant to scaffold stimulation displayed a deficit in active Cdc42 at the pole. These findings illustrate the self-regulatory properties that scaffold proteins confer on signalling pathways. |
doi_str_mv | 10.7554/eLife.25257 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3398c794d30244aea53e3361a59ed5cd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A488997012</galeid><doaj_id>oai_doaj_org_article_3398c794d30244aea53e3361a59ed5cd</doaj_id><sourcerecordid>A488997012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3</originalsourceid><addsrcrecordid>eNptks9rFDEUxwdRbKk9eZcFLxaZNb9_XIRlUbuwINgevIVs8jLNMjupk5lS_3szu7V2i8kh4ZvP-77k5VXVW4zmknP2CdYxwJxwwuWL6pQgjmqk2M-XT_Yn1XnOW1SGZEph_bo6IYoiRqQ4rfCVsyGk1tc78NEO4GeNHWLXzFKYLb1jZJZj09m2nbTQjvdvqlfBthnOH9az6vrrl-vlZb3-_m21XKxrJzAaaiowAeVxUEKzjWfIUsW9CkCdtmKDHRYCBYE5Y1pp4EGCBaIAhRCwcPSsWh1sfbJbc9vHne1_m2Sj2Qupb4zth-haMJRq5aRmniLCmAXLKdCS33INnjtfvD4fvG7HTXmmg27obXtkenzSxRvTpDvDqRJco2JwcTC4eRZ2uVibSSuJMUOU3uHCfnhI1qdfI-TB7GJ20La2gzRmg5VUimgpVEHfP0O3aexLsQulOZFISUr-UY0tj41dSOWObjI1i_KhWkuEJ2r-H6pMD7voUgchFv0o4OIooDAD3A-NHXM2q6sfx-zHA-v6lHMP4bEIGJmpD82-D82-Dwv97mm5H9m_XUf_AKyS05o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952708732</pqid></control><display><type>article</type><title>Scaffold-mediated gating of Cdc42 signalling flux</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Rapali, Péter ; Mitteau, Romain ; Braun, Craig ; Massoni-Laporte, Aurèlie ; Ünlü, Caner ; Bataille, Laure ; Arramon, Floriane Saint ; Gygi, Steven P ; McCusker, Derek</creator><creatorcontrib>Rapali, Péter ; Mitteau, Romain ; Braun, Craig ; Massoni-Laporte, Aurèlie ; Ünlü, Caner ; Bataille, Laure ; Arramon, Floriane Saint ; Gygi, Steven P ; McCusker, Derek</creatorcontrib><description>Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an underlying mechanism. Here, we find that Bem1 directly augments the guanine exchange factor (GEF) activity of Cdc24. Bem1 also increases GEF phosphorylation by the p21-activated kinase (PAK), Cla4. Phosphorylation abrogates the scaffold-dependent stimulation of GEF activity, rendering Cdc24 insensitive to additional Bem1. Thus, Bem1 stimulates GEF activity in a reversible fashion, contributing to signalling flux through Cdc42. The contribution of Bem1 to GTPase dynamics was borne-out by in vivo imaging: active Cdc42 was enriched at the cell pole in hypophosphorylated cdc24 mutants, while hyperphosphorylated cdc24 mutants that were resistant to scaffold stimulation displayed a deficit in active Cdc42 at the pole. These findings illustrate the self-regulatory properties that scaffold proteins confer on signalling pathways.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.25257</identifier><identifier>PMID: 28304276</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Adaptor Proteins, Signal Transducing - metabolism ; Bem1 protein ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism ; Cdc42 protein ; Cell Biology ; Cell cycle ; cell polarity ; Cellular Biology ; Cellular signal transduction ; Chloride Channels - metabolism ; Chromatin ; Gating ; Guanine ; Guanosine triphosphatases ; Guanosine Triphosphate - metabolism ; Intravital Microscopy ; Life Sciences ; Microscopy ; Observations ; p21-activated kinase ; Phosphorylation ; Physiological aspects ; Polarity ; Proteins ; Rho GTPase ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins - metabolism ; Short Report ; Signal Transduction ; signaling ; Software</subject><ispartof>eLife, 2017-03, Vol.6</ispartof><rights>COPYRIGHT 2017 eLife Science Publications, Ltd.</rights><rights>2017, Rapali et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017, Rapali et al 2017 Rapali et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3</citedby><cites>FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3</cites><orcidid>0000-0002-0612-3111 ; 0000-0003-1455-1711 ; 0000-0003-2351-8796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1952708732/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1952708732?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28304276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02414033$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rapali, Péter</creatorcontrib><creatorcontrib>Mitteau, Romain</creatorcontrib><creatorcontrib>Braun, Craig</creatorcontrib><creatorcontrib>Massoni-Laporte, Aurèlie</creatorcontrib><creatorcontrib>Ünlü, Caner</creatorcontrib><creatorcontrib>Bataille, Laure</creatorcontrib><creatorcontrib>Arramon, Floriane Saint</creatorcontrib><creatorcontrib>Gygi, Steven P</creatorcontrib><creatorcontrib>McCusker, Derek</creatorcontrib><title>Scaffold-mediated gating of Cdc42 signalling flux</title><title>eLife</title><addtitle>Elife</addtitle><description>Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an underlying mechanism. Here, we find that Bem1 directly augments the guanine exchange factor (GEF) activity of Cdc24. Bem1 also increases GEF phosphorylation by the p21-activated kinase (PAK), Cla4. Phosphorylation abrogates the scaffold-dependent stimulation of GEF activity, rendering Cdc24 insensitive to additional Bem1. Thus, Bem1 stimulates GEF activity in a reversible fashion, contributing to signalling flux through Cdc42. The contribution of Bem1 to GTPase dynamics was borne-out by in vivo imaging: active Cdc42 was enriched at the cell pole in hypophosphorylated cdc24 mutants, while hyperphosphorylated cdc24 mutants that were resistant to scaffold stimulation displayed a deficit in active Cdc42 at the pole. These findings illustrate the self-regulatory properties that scaffold proteins confer on signalling pathways.</description><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Bem1 protein</subject><subject>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism</subject><subject>Cdc42 protein</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>cell polarity</subject><subject>Cellular Biology</subject><subject>Cellular signal transduction</subject><subject>Chloride Channels - metabolism</subject><subject>Chromatin</subject><subject>Gating</subject><subject>Guanine</subject><subject>Guanosine triphosphatases</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Intravital Microscopy</subject><subject>Life Sciences</subject><subject>Microscopy</subject><subject>Observations</subject><subject>p21-activated kinase</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Polarity</subject><subject>Proteins</subject><subject>Rho GTPase</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Short Report</subject><subject>Signal Transduction</subject><subject>signaling</subject><subject>Software</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9rFDEUxwdRbKk9eZcFLxaZNb9_XIRlUbuwINgevIVs8jLNMjupk5lS_3szu7V2i8kh4ZvP-77k5VXVW4zmknP2CdYxwJxwwuWL6pQgjmqk2M-XT_Yn1XnOW1SGZEph_bo6IYoiRqQ4rfCVsyGk1tc78NEO4GeNHWLXzFKYLb1jZJZj09m2nbTQjvdvqlfBthnOH9az6vrrl-vlZb3-_m21XKxrJzAaaiowAeVxUEKzjWfIUsW9CkCdtmKDHRYCBYE5Y1pp4EGCBaIAhRCwcPSsWh1sfbJbc9vHne1_m2Sj2Qupb4zth-haMJRq5aRmniLCmAXLKdCS33INnjtfvD4fvG7HTXmmg27obXtkenzSxRvTpDvDqRJco2JwcTC4eRZ2uVibSSuJMUOU3uHCfnhI1qdfI-TB7GJ20La2gzRmg5VUimgpVEHfP0O3aexLsQulOZFISUr-UY0tj41dSOWObjI1i_KhWkuEJ2r-H6pMD7voUgchFv0o4OIooDAD3A-NHXM2q6sfx-zHA-v6lHMP4bEIGJmpD82-D82-Dwv97mm5H9m_XUf_AKyS05o</recordid><startdate>20170317</startdate><enddate>20170317</enddate><creator>Rapali, Péter</creator><creator>Mitteau, Romain</creator><creator>Braun, Craig</creator><creator>Massoni-Laporte, Aurèlie</creator><creator>Ünlü, Caner</creator><creator>Bataille, Laure</creator><creator>Arramon, Floriane Saint</creator><creator>Gygi, Steven P</creator><creator>McCusker, Derek</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publication</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0612-3111</orcidid><orcidid>https://orcid.org/0000-0003-1455-1711</orcidid><orcidid>https://orcid.org/0000-0003-2351-8796</orcidid></search><sort><creationdate>20170317</creationdate><title>Scaffold-mediated gating of Cdc42 signalling flux</title><author>Rapali, Péter ; Mitteau, Romain ; Braun, Craig ; Massoni-Laporte, Aurèlie ; Ünlü, Caner ; Bataille, Laure ; Arramon, Floriane Saint ; Gygi, Steven P ; McCusker, Derek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Bem1 protein</topic><topic>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism</topic><topic>Cdc42 protein</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>cell polarity</topic><topic>Cellular Biology</topic><topic>Cellular signal transduction</topic><topic>Chloride Channels - metabolism</topic><topic>Chromatin</topic><topic>Gating</topic><topic>Guanine</topic><topic>Guanosine triphosphatases</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Intravital Microscopy</topic><topic>Life Sciences</topic><topic>Microscopy</topic><topic>Observations</topic><topic>p21-activated kinase</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Polarity</topic><topic>Proteins</topic><topic>Rho GTPase</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Short Report</topic><topic>Signal Transduction</topic><topic>signaling</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rapali, Péter</creatorcontrib><creatorcontrib>Mitteau, Romain</creatorcontrib><creatorcontrib>Braun, Craig</creatorcontrib><creatorcontrib>Massoni-Laporte, Aurèlie</creatorcontrib><creatorcontrib>Ünlü, Caner</creatorcontrib><creatorcontrib>Bataille, Laure</creatorcontrib><creatorcontrib>Arramon, Floriane Saint</creatorcontrib><creatorcontrib>Gygi, Steven P</creatorcontrib><creatorcontrib>McCusker, Derek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rapali, Péter</au><au>Mitteau, Romain</au><au>Braun, Craig</au><au>Massoni-Laporte, Aurèlie</au><au>Ünlü, Caner</au><au>Bataille, Laure</au><au>Arramon, Floriane Saint</au><au>Gygi, Steven P</au><au>McCusker, Derek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaffold-mediated gating of Cdc42 signalling flux</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2017-03-17</date><risdate>2017</risdate><volume>6</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an underlying mechanism. Here, we find that Bem1 directly augments the guanine exchange factor (GEF) activity of Cdc24. Bem1 also increases GEF phosphorylation by the p21-activated kinase (PAK), Cla4. Phosphorylation abrogates the scaffold-dependent stimulation of GEF activity, rendering Cdc24 insensitive to additional Bem1. Thus, Bem1 stimulates GEF activity in a reversible fashion, contributing to signalling flux through Cdc42. The contribution of Bem1 to GTPase dynamics was borne-out by in vivo imaging: active Cdc42 was enriched at the cell pole in hypophosphorylated cdc24 mutants, while hyperphosphorylated cdc24 mutants that were resistant to scaffold stimulation displayed a deficit in active Cdc42 at the pole. These findings illustrate the self-regulatory properties that scaffold proteins confer on signalling pathways.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>28304276</pmid><doi>10.7554/eLife.25257</doi><orcidid>https://orcid.org/0000-0002-0612-3111</orcidid><orcidid>https://orcid.org/0000-0003-1455-1711</orcidid><orcidid>https://orcid.org/0000-0003-2351-8796</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2017-03, Vol.6 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3398c794d30244aea53e3361a59ed5cd |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Adaptor Proteins, Signal Transducing - metabolism Bem1 protein cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism Cdc42 protein Cell Biology Cell cycle cell polarity Cellular Biology Cellular signal transduction Chloride Channels - metabolism Chromatin Gating Guanine Guanosine triphosphatases Guanosine Triphosphate - metabolism Intravital Microscopy Life Sciences Microscopy Observations p21-activated kinase Phosphorylation Physiological aspects Polarity Proteins Rho GTPase Saccharomyces cerevisiae - physiology Saccharomyces cerevisiae Proteins - metabolism Short Report Signal Transduction signaling Software |
title | Scaffold-mediated gating of Cdc42 signalling flux |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaffold-mediated%20gating%20of%20Cdc42%20signalling%20flux&rft.jtitle=eLife&rft.au=Rapali,%20P%C3%A9ter&rft.date=2017-03-17&rft.volume=6&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.25257&rft_dat=%3Cgale_doaj_%3EA488997012%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1952708732&rft_id=info:pmid/28304276&rft_galeid=A488997012&rfr_iscdi=true |