Loading…

Scaffold-mediated gating of Cdc42 signalling flux

Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an under...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2017-03, Vol.6
Main Authors: Rapali, Péter, Mitteau, Romain, Braun, Craig, Massoni-Laporte, Aurèlie, Ünlü, Caner, Bataille, Laure, Arramon, Floriane Saint, Gygi, Steven P, McCusker, Derek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3
cites cdi_FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 6
creator Rapali, Péter
Mitteau, Romain
Braun, Craig
Massoni-Laporte, Aurèlie
Ünlü, Caner
Bataille, Laure
Arramon, Floriane Saint
Gygi, Steven P
McCusker, Derek
description Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an underlying mechanism. Here, we find that Bem1 directly augments the guanine exchange factor (GEF) activity of Cdc24. Bem1 also increases GEF phosphorylation by the p21-activated kinase (PAK), Cla4. Phosphorylation abrogates the scaffold-dependent stimulation of GEF activity, rendering Cdc24 insensitive to additional Bem1. Thus, Bem1 stimulates GEF activity in a reversible fashion, contributing to signalling flux through Cdc42. The contribution of Bem1 to GTPase dynamics was borne-out by in vivo imaging: active Cdc42 was enriched at the cell pole in hypophosphorylated cdc24 mutants, while hyperphosphorylated cdc24 mutants that were resistant to scaffold stimulation displayed a deficit in active Cdc42 at the pole. These findings illustrate the self-regulatory properties that scaffold proteins confer on signalling pathways.
doi_str_mv 10.7554/eLife.25257
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3398c794d30244aea53e3361a59ed5cd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A488997012</galeid><doaj_id>oai_doaj_org_article_3398c794d30244aea53e3361a59ed5cd</doaj_id><sourcerecordid>A488997012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3</originalsourceid><addsrcrecordid>eNptks9rFDEUxwdRbKk9eZcFLxaZNb9_XIRlUbuwINgevIVs8jLNMjupk5lS_3szu7V2i8kh4ZvP-77k5VXVW4zmknP2CdYxwJxwwuWL6pQgjmqk2M-XT_Yn1XnOW1SGZEph_bo6IYoiRqQ4rfCVsyGk1tc78NEO4GeNHWLXzFKYLb1jZJZj09m2nbTQjvdvqlfBthnOH9az6vrrl-vlZb3-_m21XKxrJzAaaiowAeVxUEKzjWfIUsW9CkCdtmKDHRYCBYE5Y1pp4EGCBaIAhRCwcPSsWh1sfbJbc9vHne1_m2Sj2Qupb4zth-haMJRq5aRmniLCmAXLKdCS33INnjtfvD4fvG7HTXmmg27obXtkenzSxRvTpDvDqRJco2JwcTC4eRZ2uVibSSuJMUOU3uHCfnhI1qdfI-TB7GJ20La2gzRmg5VUimgpVEHfP0O3aexLsQulOZFISUr-UY0tj41dSOWObjI1i_KhWkuEJ2r-H6pMD7voUgchFv0o4OIooDAD3A-NHXM2q6sfx-zHA-v6lHMP4bEIGJmpD82-D82-Dwv97mm5H9m_XUf_AKyS05o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952708732</pqid></control><display><type>article</type><title>Scaffold-mediated gating of Cdc42 signalling flux</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Rapali, Péter ; Mitteau, Romain ; Braun, Craig ; Massoni-Laporte, Aurèlie ; Ünlü, Caner ; Bataille, Laure ; Arramon, Floriane Saint ; Gygi, Steven P ; McCusker, Derek</creator><creatorcontrib>Rapali, Péter ; Mitteau, Romain ; Braun, Craig ; Massoni-Laporte, Aurèlie ; Ünlü, Caner ; Bataille, Laure ; Arramon, Floriane Saint ; Gygi, Steven P ; McCusker, Derek</creatorcontrib><description>Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an underlying mechanism. Here, we find that Bem1 directly augments the guanine exchange factor (GEF) activity of Cdc24. Bem1 also increases GEF phosphorylation by the p21-activated kinase (PAK), Cla4. Phosphorylation abrogates the scaffold-dependent stimulation of GEF activity, rendering Cdc24 insensitive to additional Bem1. Thus, Bem1 stimulates GEF activity in a reversible fashion, contributing to signalling flux through Cdc42. The contribution of Bem1 to GTPase dynamics was borne-out by in vivo imaging: active Cdc42 was enriched at the cell pole in hypophosphorylated cdc24 mutants, while hyperphosphorylated cdc24 mutants that were resistant to scaffold stimulation displayed a deficit in active Cdc42 at the pole. These findings illustrate the self-regulatory properties that scaffold proteins confer on signalling pathways.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.25257</identifier><identifier>PMID: 28304276</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Adaptor Proteins, Signal Transducing - metabolism ; Bem1 protein ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism ; Cdc42 protein ; Cell Biology ; Cell cycle ; cell polarity ; Cellular Biology ; Cellular signal transduction ; Chloride Channels - metabolism ; Chromatin ; Gating ; Guanine ; Guanosine triphosphatases ; Guanosine Triphosphate - metabolism ; Intravital Microscopy ; Life Sciences ; Microscopy ; Observations ; p21-activated kinase ; Phosphorylation ; Physiological aspects ; Polarity ; Proteins ; Rho GTPase ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins - metabolism ; Short Report ; Signal Transduction ; signaling ; Software</subject><ispartof>eLife, 2017-03, Vol.6</ispartof><rights>COPYRIGHT 2017 eLife Science Publications, Ltd.</rights><rights>2017, Rapali et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017, Rapali et al 2017 Rapali et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3</citedby><cites>FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3</cites><orcidid>0000-0002-0612-3111 ; 0000-0003-1455-1711 ; 0000-0003-2351-8796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1952708732/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1952708732?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28304276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02414033$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rapali, Péter</creatorcontrib><creatorcontrib>Mitteau, Romain</creatorcontrib><creatorcontrib>Braun, Craig</creatorcontrib><creatorcontrib>Massoni-Laporte, Aurèlie</creatorcontrib><creatorcontrib>Ünlü, Caner</creatorcontrib><creatorcontrib>Bataille, Laure</creatorcontrib><creatorcontrib>Arramon, Floriane Saint</creatorcontrib><creatorcontrib>Gygi, Steven P</creatorcontrib><creatorcontrib>McCusker, Derek</creatorcontrib><title>Scaffold-mediated gating of Cdc42 signalling flux</title><title>eLife</title><addtitle>Elife</addtitle><description>Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an underlying mechanism. Here, we find that Bem1 directly augments the guanine exchange factor (GEF) activity of Cdc24. Bem1 also increases GEF phosphorylation by the p21-activated kinase (PAK), Cla4. Phosphorylation abrogates the scaffold-dependent stimulation of GEF activity, rendering Cdc24 insensitive to additional Bem1. Thus, Bem1 stimulates GEF activity in a reversible fashion, contributing to signalling flux through Cdc42. The contribution of Bem1 to GTPase dynamics was borne-out by in vivo imaging: active Cdc42 was enriched at the cell pole in hypophosphorylated cdc24 mutants, while hyperphosphorylated cdc24 mutants that were resistant to scaffold stimulation displayed a deficit in active Cdc42 at the pole. These findings illustrate the self-regulatory properties that scaffold proteins confer on signalling pathways.</description><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Bem1 protein</subject><subject>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism</subject><subject>Cdc42 protein</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>cell polarity</subject><subject>Cellular Biology</subject><subject>Cellular signal transduction</subject><subject>Chloride Channels - metabolism</subject><subject>Chromatin</subject><subject>Gating</subject><subject>Guanine</subject><subject>Guanosine triphosphatases</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Intravital Microscopy</subject><subject>Life Sciences</subject><subject>Microscopy</subject><subject>Observations</subject><subject>p21-activated kinase</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Polarity</subject><subject>Proteins</subject><subject>Rho GTPase</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Short Report</subject><subject>Signal Transduction</subject><subject>signaling</subject><subject>Software</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9rFDEUxwdRbKk9eZcFLxaZNb9_XIRlUbuwINgevIVs8jLNMjupk5lS_3szu7V2i8kh4ZvP-77k5VXVW4zmknP2CdYxwJxwwuWL6pQgjmqk2M-XT_Yn1XnOW1SGZEph_bo6IYoiRqQ4rfCVsyGk1tc78NEO4GeNHWLXzFKYLb1jZJZj09m2nbTQjvdvqlfBthnOH9az6vrrl-vlZb3-_m21XKxrJzAaaiowAeVxUEKzjWfIUsW9CkCdtmKDHRYCBYE5Y1pp4EGCBaIAhRCwcPSsWh1sfbJbc9vHne1_m2Sj2Qupb4zth-haMJRq5aRmniLCmAXLKdCS33INnjtfvD4fvG7HTXmmg27obXtkenzSxRvTpDvDqRJco2JwcTC4eRZ2uVibSSuJMUOU3uHCfnhI1qdfI-TB7GJ20La2gzRmg5VUimgpVEHfP0O3aexLsQulOZFISUr-UY0tj41dSOWObjI1i_KhWkuEJ2r-H6pMD7voUgchFv0o4OIooDAD3A-NHXM2q6sfx-zHA-v6lHMP4bEIGJmpD82-D82-Dwv97mm5H9m_XUf_AKyS05o</recordid><startdate>20170317</startdate><enddate>20170317</enddate><creator>Rapali, Péter</creator><creator>Mitteau, Romain</creator><creator>Braun, Craig</creator><creator>Massoni-Laporte, Aurèlie</creator><creator>Ünlü, Caner</creator><creator>Bataille, Laure</creator><creator>Arramon, Floriane Saint</creator><creator>Gygi, Steven P</creator><creator>McCusker, Derek</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publication</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0612-3111</orcidid><orcidid>https://orcid.org/0000-0003-1455-1711</orcidid><orcidid>https://orcid.org/0000-0003-2351-8796</orcidid></search><sort><creationdate>20170317</creationdate><title>Scaffold-mediated gating of Cdc42 signalling flux</title><author>Rapali, Péter ; Mitteau, Romain ; Braun, Craig ; Massoni-Laporte, Aurèlie ; Ünlü, Caner ; Bataille, Laure ; Arramon, Floriane Saint ; Gygi, Steven P ; McCusker, Derek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Bem1 protein</topic><topic>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism</topic><topic>Cdc42 protein</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>cell polarity</topic><topic>Cellular Biology</topic><topic>Cellular signal transduction</topic><topic>Chloride Channels - metabolism</topic><topic>Chromatin</topic><topic>Gating</topic><topic>Guanine</topic><topic>Guanosine triphosphatases</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Intravital Microscopy</topic><topic>Life Sciences</topic><topic>Microscopy</topic><topic>Observations</topic><topic>p21-activated kinase</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Polarity</topic><topic>Proteins</topic><topic>Rho GTPase</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Short Report</topic><topic>Signal Transduction</topic><topic>signaling</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rapali, Péter</creatorcontrib><creatorcontrib>Mitteau, Romain</creatorcontrib><creatorcontrib>Braun, Craig</creatorcontrib><creatorcontrib>Massoni-Laporte, Aurèlie</creatorcontrib><creatorcontrib>Ünlü, Caner</creatorcontrib><creatorcontrib>Bataille, Laure</creatorcontrib><creatorcontrib>Arramon, Floriane Saint</creatorcontrib><creatorcontrib>Gygi, Steven P</creatorcontrib><creatorcontrib>McCusker, Derek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rapali, Péter</au><au>Mitteau, Romain</au><au>Braun, Craig</au><au>Massoni-Laporte, Aurèlie</au><au>Ünlü, Caner</au><au>Bataille, Laure</au><au>Arramon, Floriane Saint</au><au>Gygi, Steven P</au><au>McCusker, Derek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaffold-mediated gating of Cdc42 signalling flux</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2017-03-17</date><risdate>2017</risdate><volume>6</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an underlying mechanism. Here, we find that Bem1 directly augments the guanine exchange factor (GEF) activity of Cdc24. Bem1 also increases GEF phosphorylation by the p21-activated kinase (PAK), Cla4. Phosphorylation abrogates the scaffold-dependent stimulation of GEF activity, rendering Cdc24 insensitive to additional Bem1. Thus, Bem1 stimulates GEF activity in a reversible fashion, contributing to signalling flux through Cdc42. The contribution of Bem1 to GTPase dynamics was borne-out by in vivo imaging: active Cdc42 was enriched at the cell pole in hypophosphorylated cdc24 mutants, while hyperphosphorylated cdc24 mutants that were resistant to scaffold stimulation displayed a deficit in active Cdc42 at the pole. These findings illustrate the self-regulatory properties that scaffold proteins confer on signalling pathways.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>28304276</pmid><doi>10.7554/eLife.25257</doi><orcidid>https://orcid.org/0000-0002-0612-3111</orcidid><orcidid>https://orcid.org/0000-0003-1455-1711</orcidid><orcidid>https://orcid.org/0000-0003-2351-8796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2017-03, Vol.6
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3398c794d30244aea53e3361a59ed5cd
source Publicly Available Content (ProQuest); PubMed Central
subjects Adaptor Proteins, Signal Transducing - metabolism
Bem1 protein
cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism
Cdc42 protein
Cell Biology
Cell cycle
cell polarity
Cellular Biology
Cellular signal transduction
Chloride Channels - metabolism
Chromatin
Gating
Guanine
Guanosine triphosphatases
Guanosine Triphosphate - metabolism
Intravital Microscopy
Life Sciences
Microscopy
Observations
p21-activated kinase
Phosphorylation
Physiological aspects
Polarity
Proteins
Rho GTPase
Saccharomyces cerevisiae - physiology
Saccharomyces cerevisiae Proteins - metabolism
Short Report
Signal Transduction
signaling
Software
title Scaffold-mediated gating of Cdc42 signalling flux
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaffold-mediated%20gating%20of%20Cdc42%20signalling%20flux&rft.jtitle=eLife&rft.au=Rapali,%20P%C3%A9ter&rft.date=2017-03-17&rft.volume=6&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.25257&rft_dat=%3Cgale_doaj_%3EA488997012%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c610t-3612e8d1f8694bd40a385d8fe3c9a6b1c1660f61544989e5f7eae28e0fff16c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1952708732&rft_id=info:pmid/28304276&rft_galeid=A488997012&rfr_iscdi=true