Loading…

Structures of mouse and human GITR–GITRL complexes reveal unique TNF superfamily interactions

Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) are members of the tumor necrosis superfamily that play a role in immune cell signaling, activation, and survival. GITR is a therapeutic target for directly activating effector CD4 and CD8 T cells, o...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-03, Vol.12 (1), p.1378-1378, Article 1378
Main Authors: Wang, Feng, Chau, Bryant, West, Sean M., Kimberlin, Christopher R., Cao, Fei, Schwarz, Flavio, Aguilar, Barbara, Han, Minhua, Morishige, Winse, Bee, Christine, Dollinger, Gavin, Rajpal, Arvind, Strop, Pavel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-4ea9d6b87849434f45b834399f8dfe38e1ce20a408a5377dd236d42c55af6a1e3
cites cdi_FETCH-LOGICAL-c540t-4ea9d6b87849434f45b834399f8dfe38e1ce20a408a5377dd236d42c55af6a1e3
container_end_page 1378
container_issue 1
container_start_page 1378
container_title Nature communications
container_volume 12
creator Wang, Feng
Chau, Bryant
West, Sean M.
Kimberlin, Christopher R.
Cao, Fei
Schwarz, Flavio
Aguilar, Barbara
Han, Minhua
Morishige, Winse
Bee, Christine
Dollinger, Gavin
Rajpal, Arvind
Strop, Pavel
description Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) are members of the tumor necrosis superfamily that play a role in immune cell signaling, activation, and survival. GITR is a therapeutic target for directly activating effector CD4 and CD8 T cells, or depleting GITR-expressing regulatory T cells (Tregs), thereby promoting anti-tumor immune responses. GITR activation through its native ligand is important for understanding immune signaling, but GITR structure has not been reported. Here we present structures of human and mouse GITR receptors bound to their cognate ligands. Both species share a receptor–ligand interface and receptor–receptor interface; the unique C-terminal receptor–receptor enables higher order structures on the membrane. Human GITR–GITRL has potential to form a hexameric network of membrane complexes, while murine GITR–GITRL complex forms a linear chain due to dimeric interactions. Mutations at the receptor–receptor interface in human GITR reduce cell signaling with in vitro ligand binding assays and minimize higher order membrane structures when bound by fluorescently labeled ligand in cell imaging experiments. Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) regulate immune cell activities, including anti-tumor immune responses. Structures and visualization of human and mouse GITR–GITRL complexes offer insight into the architecture of higher-order membrane assemblies, and their signaling.
doi_str_mv 10.1038/s41467-021-21563-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_339a2bcd2cae4b929cc7ae8a3d566f01</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_339a2bcd2cae4b929cc7ae8a3d566f01</doaj_id><sourcerecordid>2496237185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-4ea9d6b87849434f45b834399f8dfe38e1ce20a408a5377dd236d42c55af6a1e3</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEolXpC3BAkbhwSfHfxL4goYqWlVYgwXK2Zu3JNqvEXuykoj3xDrwhT1JvU0rLAV_G8vzm83j8FcVLSk4o4eptElTUTUUYrRiVNa-unxSHjAha0Ybxpw_2B8VxSluSF9dUCfG8OOC8loIoeliYr2Oc7DhFTGVoyyFMCUvwrryYBvDl-WL15ffPX_uwLG0Ydj3-yGTES4S-nHz3fcJy9emsTNMOYwtD11-VnR8xgh274NOL4lkLfcLju3hUfDv7sDr9WC0_ny9O3y8rmxsZK4GgXb1WjRJacNEKuVZccK1b5VrkCqlFRiD3DJI3jXOM104wKyW0NVDkR8Vi1nUBtmYXuwHilQnQmduDEDcG4tjZHg3nGtjaOmYBxVozbW0DqIA7WdctoVnr3ay1m9YDOot-jNA_En2c8d2F2YRL02gmpWyywJs7gRjygNJohi5Z7HvwmAdsmNA14w1VMqOv_0G3YYo-j2pPSaooIXWm2EzZGFKK2N43Q4nZ28HMdjDZDubWDuY6F716-Iz7kj-fnwE-Aymn_Abj37v_I3sD3xnCTw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495181006</pqid></control><display><type>article</type><title>Structures of mouse and human GITR–GITRL complexes reveal unique TNF superfamily interactions</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Feng ; Chau, Bryant ; West, Sean M. ; Kimberlin, Christopher R. ; Cao, Fei ; Schwarz, Flavio ; Aguilar, Barbara ; Han, Minhua ; Morishige, Winse ; Bee, Christine ; Dollinger, Gavin ; Rajpal, Arvind ; Strop, Pavel</creator><creatorcontrib>Wang, Feng ; Chau, Bryant ; West, Sean M. ; Kimberlin, Christopher R. ; Cao, Fei ; Schwarz, Flavio ; Aguilar, Barbara ; Han, Minhua ; Morishige, Winse ; Bee, Christine ; Dollinger, Gavin ; Rajpal, Arvind ; Strop, Pavel</creatorcontrib><description>Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) are members of the tumor necrosis superfamily that play a role in immune cell signaling, activation, and survival. GITR is a therapeutic target for directly activating effector CD4 and CD8 T cells, or depleting GITR-expressing regulatory T cells (Tregs), thereby promoting anti-tumor immune responses. GITR activation through its native ligand is important for understanding immune signaling, but GITR structure has not been reported. Here we present structures of human and mouse GITR receptors bound to their cognate ligands. Both species share a receptor–ligand interface and receptor–receptor interface; the unique C-terminal receptor–receptor enables higher order structures on the membrane. Human GITR–GITRL has potential to form a hexameric network of membrane complexes, while murine GITR–GITRL complex forms a linear chain due to dimeric interactions. Mutations at the receptor–receptor interface in human GITR reduce cell signaling with in vitro ligand binding assays and minimize higher order membrane structures when bound by fluorescently labeled ligand in cell imaging experiments. Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) regulate immune cell activities, including anti-tumor immune responses. Structures and visualization of human and mouse GITR–GITRL complexes offer insight into the architecture of higher-order membrane assemblies, and their signaling.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-21563-z</identifier><identifier>PMID: 33654081</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 631/250/251 ; 631/45/612/1237 ; 631/535/1266 ; 631/80/86 ; Animals ; Anticancer properties ; Biophysical Phenomena ; CD4 antigen ; CD8 antigen ; Cell activation ; Cell Line ; Cell Membrane - metabolism ; Cell survival ; Glucocorticoid-Induced TNFR-Related Protein - chemistry ; Glucocorticoid-Induced TNFR-Related Protein - metabolism ; Glucocorticoids ; Humanities and Social Sciences ; Humans ; Immune system ; Immunoregulation ; Ligands ; Lymphocytes ; Lymphocytes T ; Membrane structures ; Membranes ; Mice ; Models, Molecular ; multidisciplinary ; Mutation ; Protein Binding ; Proteins ; Receptors ; Reproducibility of Results ; Science ; Science (multidisciplinary) ; Signaling ; Therapeutic targets ; Tumor necrosis factor ; Tumor necrosis factor-TNF ; Tumor Necrosis Factors - chemistry ; Tumor Necrosis Factors - metabolism</subject><ispartof>Nature communications, 2021-03, Vol.12 (1), p.1378-1378, Article 1378</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-4ea9d6b87849434f45b834399f8dfe38e1ce20a408a5377dd236d42c55af6a1e3</citedby><cites>FETCH-LOGICAL-c540t-4ea9d6b87849434f45b834399f8dfe38e1ce20a408a5377dd236d42c55af6a1e3</cites><orcidid>0000-0002-7722-8447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2495181006/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2495181006?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33654081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Chau, Bryant</creatorcontrib><creatorcontrib>West, Sean M.</creatorcontrib><creatorcontrib>Kimberlin, Christopher R.</creatorcontrib><creatorcontrib>Cao, Fei</creatorcontrib><creatorcontrib>Schwarz, Flavio</creatorcontrib><creatorcontrib>Aguilar, Barbara</creatorcontrib><creatorcontrib>Han, Minhua</creatorcontrib><creatorcontrib>Morishige, Winse</creatorcontrib><creatorcontrib>Bee, Christine</creatorcontrib><creatorcontrib>Dollinger, Gavin</creatorcontrib><creatorcontrib>Rajpal, Arvind</creatorcontrib><creatorcontrib>Strop, Pavel</creatorcontrib><title>Structures of mouse and human GITR–GITRL complexes reveal unique TNF superfamily interactions</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) are members of the tumor necrosis superfamily that play a role in immune cell signaling, activation, and survival. GITR is a therapeutic target for directly activating effector CD4 and CD8 T cells, or depleting GITR-expressing regulatory T cells (Tregs), thereby promoting anti-tumor immune responses. GITR activation through its native ligand is important for understanding immune signaling, but GITR structure has not been reported. Here we present structures of human and mouse GITR receptors bound to their cognate ligands. Both species share a receptor–ligand interface and receptor–receptor interface; the unique C-terminal receptor–receptor enables higher order structures on the membrane. Human GITR–GITRL has potential to form a hexameric network of membrane complexes, while murine GITR–GITRL complex forms a linear chain due to dimeric interactions. Mutations at the receptor–receptor interface in human GITR reduce cell signaling with in vitro ligand binding assays and minimize higher order membrane structures when bound by fluorescently labeled ligand in cell imaging experiments. Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) regulate immune cell activities, including anti-tumor immune responses. Structures and visualization of human and mouse GITR–GITRL complexes offer insight into the architecture of higher-order membrane assemblies, and their signaling.</description><subject>14</subject><subject>631/250/251</subject><subject>631/45/612/1237</subject><subject>631/535/1266</subject><subject>631/80/86</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Biophysical Phenomena</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>Cell activation</subject><subject>Cell Line</subject><subject>Cell Membrane - metabolism</subject><subject>Cell survival</subject><subject>Glucocorticoid-Induced TNFR-Related Protein - chemistry</subject><subject>Glucocorticoid-Induced TNFR-Related Protein - metabolism</subject><subject>Glucocorticoids</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunoregulation</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Membrane structures</subject><subject>Membranes</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signaling</subject><subject>Therapeutic targets</subject><subject>Tumor necrosis factor</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor Necrosis Factors - chemistry</subject><subject>Tumor Necrosis Factors - metabolism</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQxiMEolXpC3BAkbhwSfHfxL4goYqWlVYgwXK2Zu3JNqvEXuykoj3xDrwhT1JvU0rLAV_G8vzm83j8FcVLSk4o4eptElTUTUUYrRiVNa-unxSHjAha0Ybxpw_2B8VxSluSF9dUCfG8OOC8loIoeliYr2Oc7DhFTGVoyyFMCUvwrryYBvDl-WL15ffPX_uwLG0Ydj3-yGTES4S-nHz3fcJy9emsTNMOYwtD11-VnR8xgh274NOL4lkLfcLju3hUfDv7sDr9WC0_ny9O3y8rmxsZK4GgXb1WjRJacNEKuVZccK1b5VrkCqlFRiD3DJI3jXOM104wKyW0NVDkR8Vi1nUBtmYXuwHilQnQmduDEDcG4tjZHg3nGtjaOmYBxVozbW0DqIA7WdctoVnr3ay1m9YDOot-jNA_En2c8d2F2YRL02gmpWyywJs7gRjygNJohi5Z7HvwmAdsmNA14w1VMqOv_0G3YYo-j2pPSaooIXWm2EzZGFKK2N43Q4nZ28HMdjDZDubWDuY6F716-Iz7kj-fnwE-Aymn_Abj37v_I3sD3xnCTw</recordid><startdate>20210302</startdate><enddate>20210302</enddate><creator>Wang, Feng</creator><creator>Chau, Bryant</creator><creator>West, Sean M.</creator><creator>Kimberlin, Christopher R.</creator><creator>Cao, Fei</creator><creator>Schwarz, Flavio</creator><creator>Aguilar, Barbara</creator><creator>Han, Minhua</creator><creator>Morishige, Winse</creator><creator>Bee, Christine</creator><creator>Dollinger, Gavin</creator><creator>Rajpal, Arvind</creator><creator>Strop, Pavel</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7722-8447</orcidid></search><sort><creationdate>20210302</creationdate><title>Structures of mouse and human GITR–GITRL complexes reveal unique TNF superfamily interactions</title><author>Wang, Feng ; Chau, Bryant ; West, Sean M. ; Kimberlin, Christopher R. ; Cao, Fei ; Schwarz, Flavio ; Aguilar, Barbara ; Han, Minhua ; Morishige, Winse ; Bee, Christine ; Dollinger, Gavin ; Rajpal, Arvind ; Strop, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-4ea9d6b87849434f45b834399f8dfe38e1ce20a408a5377dd236d42c55af6a1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14</topic><topic>631/250/251</topic><topic>631/45/612/1237</topic><topic>631/535/1266</topic><topic>631/80/86</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Biophysical Phenomena</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>Cell activation</topic><topic>Cell Line</topic><topic>Cell Membrane - metabolism</topic><topic>Cell survival</topic><topic>Glucocorticoid-Induced TNFR-Related Protein - chemistry</topic><topic>Glucocorticoid-Induced TNFR-Related Protein - metabolism</topic><topic>Glucocorticoids</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunoregulation</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Membrane structures</topic><topic>Membranes</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signaling</topic><topic>Therapeutic targets</topic><topic>Tumor necrosis factor</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor Necrosis Factors - chemistry</topic><topic>Tumor Necrosis Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Chau, Bryant</creatorcontrib><creatorcontrib>West, Sean M.</creatorcontrib><creatorcontrib>Kimberlin, Christopher R.</creatorcontrib><creatorcontrib>Cao, Fei</creatorcontrib><creatorcontrib>Schwarz, Flavio</creatorcontrib><creatorcontrib>Aguilar, Barbara</creatorcontrib><creatorcontrib>Han, Minhua</creatorcontrib><creatorcontrib>Morishige, Winse</creatorcontrib><creatorcontrib>Bee, Christine</creatorcontrib><creatorcontrib>Dollinger, Gavin</creatorcontrib><creatorcontrib>Rajpal, Arvind</creatorcontrib><creatorcontrib>Strop, Pavel</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Feng</au><au>Chau, Bryant</au><au>West, Sean M.</au><au>Kimberlin, Christopher R.</au><au>Cao, Fei</au><au>Schwarz, Flavio</au><au>Aguilar, Barbara</au><au>Han, Minhua</au><au>Morishige, Winse</au><au>Bee, Christine</au><au>Dollinger, Gavin</au><au>Rajpal, Arvind</au><au>Strop, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures of mouse and human GITR–GITRL complexes reveal unique TNF superfamily interactions</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-03-02</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>1378</spage><epage>1378</epage><pages>1378-1378</pages><artnum>1378</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) are members of the tumor necrosis superfamily that play a role in immune cell signaling, activation, and survival. GITR is a therapeutic target for directly activating effector CD4 and CD8 T cells, or depleting GITR-expressing regulatory T cells (Tregs), thereby promoting anti-tumor immune responses. GITR activation through its native ligand is important for understanding immune signaling, but GITR structure has not been reported. Here we present structures of human and mouse GITR receptors bound to their cognate ligands. Both species share a receptor–ligand interface and receptor–receptor interface; the unique C-terminal receptor–receptor enables higher order structures on the membrane. Human GITR–GITRL has potential to form a hexameric network of membrane complexes, while murine GITR–GITRL complex forms a linear chain due to dimeric interactions. Mutations at the receptor–receptor interface in human GITR reduce cell signaling with in vitro ligand binding assays and minimize higher order membrane structures when bound by fluorescently labeled ligand in cell imaging experiments. Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) regulate immune cell activities, including anti-tumor immune responses. Structures and visualization of human and mouse GITR–GITRL complexes offer insight into the architecture of higher-order membrane assemblies, and their signaling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33654081</pmid><doi>10.1038/s41467-021-21563-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7722-8447</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-03, Vol.12 (1), p.1378-1378, Article 1378
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_339a2bcd2cae4b929cc7ae8a3d566f01
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 14
631/250/251
631/45/612/1237
631/535/1266
631/80/86
Animals
Anticancer properties
Biophysical Phenomena
CD4 antigen
CD8 antigen
Cell activation
Cell Line
Cell Membrane - metabolism
Cell survival
Glucocorticoid-Induced TNFR-Related Protein - chemistry
Glucocorticoid-Induced TNFR-Related Protein - metabolism
Glucocorticoids
Humanities and Social Sciences
Humans
Immune system
Immunoregulation
Ligands
Lymphocytes
Lymphocytes T
Membrane structures
Membranes
Mice
Models, Molecular
multidisciplinary
Mutation
Protein Binding
Proteins
Receptors
Reproducibility of Results
Science
Science (multidisciplinary)
Signaling
Therapeutic targets
Tumor necrosis factor
Tumor necrosis factor-TNF
Tumor Necrosis Factors - chemistry
Tumor Necrosis Factors - metabolism
title Structures of mouse and human GITR–GITRL complexes reveal unique TNF superfamily interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20of%20mouse%20and%20human%20GITR%E2%80%93GITRL%20complexes%20reveal%20unique%20TNF%20superfamily%20interactions&rft.jtitle=Nature%20communications&rft.au=Wang,%20Feng&rft.date=2021-03-02&rft.volume=12&rft.issue=1&rft.spage=1378&rft.epage=1378&rft.pages=1378-1378&rft.artnum=1378&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-21563-z&rft_dat=%3Cproquest_doaj_%3E2496237185%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-4ea9d6b87849434f45b834399f8dfe38e1ce20a408a5377dd236d42c55af6a1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2495181006&rft_id=info:pmid/33654081&rfr_iscdi=true