Loading…

Consolidation and Dehydration of Waterlogged Archaeological Wood from Site Huaguangjiao No.1

The Huaguangjiao I is an ancient Chinese wooden shipwreck from the South Song Dynasty (AD 1127–1279) discovered in the South China Sea in 1996. The first phase of its conservation, desalination and desulfurization, was completed in 2016. In this paper, three archaeological wood samples exhibiting di...

Full description

Saved in:
Bibliographic Details
Published in:Forests 2022-11, Vol.13 (11), p.1919
Main Authors: Liu, Xinyou, Tu, Xinwei, Ma, Wanrong, Zhang, Changjun, Huang, Houyi, Varodi, Anca Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Huaguangjiao I is an ancient Chinese wooden shipwreck from the South Song Dynasty (AD 1127–1279) discovered in the South China Sea in 1996. The first phase of its conservation, desalination and desulfurization, was completed in 2016. In this paper, three archaeological wood samples exhibiting different degrees of deterioration from Huaguangjiao No. 1 were consolidated with PEG-4000 and dehydrated via freeze drying and supercritical CO2 drying methods. The dimensional stability, hygroscopicity, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used to evaluate the effects of consolidation and dehydration. The results showed that PEG4000 was an efficient consolidation material that also effectively decreased shrinkage during dehydration. Furthermore, both vacuum-freeze and supercritical CO2 drying were efficient methods for treating waterlogged archaeological wood. After PEG4000 impregnation, the shrinkage percentage of the waterlogged archaeological wood became slightly lower than sound wood. The moisture absorption of the experimental specimens ranged within 3.35%–4.53%, and they comprised 50% sound wood, resulting in a marked improvement in dimensional stability. FTIR spectra indicated that impregnation improved wood dimensional stability by reducing hydrophilic groups. These results show that this method can effectively treat waterlogged wood for preservation purposes.
ISSN:1999-4907
1999-4907
DOI:10.3390/f13111919