Loading…

Spectral Energy Density in an Axisymmetric Galaxy as Predicted by an Analytical Model for the Maxwell Field

An analytical model for the Maxwell radiation field in an axisymmetric galaxy, proposed previously, is first checked for its predictions of the spatial variation of the spectral energy distributions (SEDs) in our Galaxy. First, the model is summarized. It is now shown how to compute the SED with thi...

Full description

Saved in:
Bibliographic Details
Published in:Advances in astronomy 2021-08, Vol.2021, p.1-13
Main Author: Arminjon, Mayeul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-94ae7c3233a224bc10efc797509867660c1619a1299d57991cfad7cb35554c993
cites cdi_FETCH-LOGICAL-c504t-94ae7c3233a224bc10efc797509867660c1619a1299d57991cfad7cb35554c993
container_end_page 13
container_issue
container_start_page 1
container_title Advances in astronomy
container_volume 2021
creator Arminjon, Mayeul
description An analytical model for the Maxwell radiation field in an axisymmetric galaxy, proposed previously, is first checked for its predictions of the spatial variation of the spectral energy distributions (SEDs) in our Galaxy. First, the model is summarized. It is now shown how to compute the SED with this model. Then the model is adjusted by asking that the SED predicted at our local position in the Galaxy coincides with the available observations. Finally, the first predictions of the model for the spatial variation of the SED in the Galaxy are compared with those of a radiation transfer model. We find that the two predictions do not differ too much. This indicates that, in a future work, it should be possible with the present model to check if the “interaction energy” predicted by an alternative, scalar theory of gravitation, contributes to the dark matter.
doi_str_mv 10.1155/2021/5524600
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_340cf5d14b4d4ac3840082d0ead170a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_340cf5d14b4d4ac3840082d0ead170a0</doaj_id><sourcerecordid>2561326615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-94ae7c3233a224bc10efc797509867660c1619a1299d57991cfad7cb35554c993</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhgdRsNTe-QMCXomuPfmeXC61X7BFQb0OZ5JMm5qdWZNpu_PvzXaXgjdenXB4eHhP3qZ5T-ELpVKeMmD0VEomFMCr5oiqVi-00fr1y1uZt81JKbEDITRrGeVHze8fm-CmjImcDyHfzuRrGEqcZhIHggNZbmOZ1-sw5ejIJSbczgQL-Z6Dj24KnnTzMzZgmqfoquZm9CGRfsxkugvkBrdPISVyEUPy75o3PaYSTg7zuPl1cf7z7Gqx-nZ5fbZcLZwEMS2MwKAdZ5wjY6JzFELv6iUSTKu0UuCoogYpM8ZLbQx1PXrtOi6lFM4Yftxc771-xHu7yXGNebYjRvu8GPOtxVzTpmC5ANdLT0UnvEDHWwHQMg8BPdWAUF0f9647TP-orpYru9sBpwpq2EdW2Q97dpPHPw-hTPZ-fMj1a4plUlHOlKKyUp_3lMtjKTn0L1oKdtek3TVpD01W_NMhQBw8PsX_038B1CuaIg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561326615</pqid></control><display><type>article</type><title>Spectral Energy Density in an Axisymmetric Galaxy as Predicted by an Analytical Model for the Maxwell Field</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Arminjon, Mayeul</creator><contributor>Chan, Kwing Lam</contributor><creatorcontrib>Arminjon, Mayeul ; Chan, Kwing Lam</creatorcontrib><description>An analytical model for the Maxwell radiation field in an axisymmetric galaxy, proposed previously, is first checked for its predictions of the spatial variation of the spectral energy distributions (SEDs) in our Galaxy. First, the model is summarized. It is now shown how to compute the SED with this model. Then the model is adjusted by asking that the SED predicted at our local position in the Galaxy coincides with the available observations. Finally, the first predictions of the model for the spatial variation of the SED in the Galaxy are compared with those of a radiation transfer model. We find that the two predictions do not differ too much. This indicates that, in a future work, it should be possible with the present model to check if the “interaction energy” predicted by an alternative, scalar theory of gravitation, contributes to the dark matter.</description><identifier>ISSN: 1687-7969</identifier><identifier>EISSN: 1687-7977</identifier><identifier>DOI: 10.1155/2021/5524600</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Astrophysics ; Classical Physics ; Computational Physics ; Cosmic rays ; Dark matter ; Dust ; Energy ; Flux density ; Galactic Astrophysics ; Galaxies ; Gravitation theory ; Mathematical models ; Physics ; Radiation ; Stars &amp; galaxies ; Symmetry</subject><ispartof>Advances in astronomy, 2021-08, Vol.2021, p.1-13</ispartof><rights>Copyright © 2021 Mayeul Arminjon.</rights><rights>Copyright © 2021 Mayeul Arminjon. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-94ae7c3233a224bc10efc797509867660c1619a1299d57991cfad7cb35554c993</citedby><cites>FETCH-LOGICAL-c504t-94ae7c3233a224bc10efc797509867660c1619a1299d57991cfad7cb35554c993</cites><orcidid>0000-0002-7035-351X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2561326615/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2561326615?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25728,27898,27899,36986,44563,75093</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03160323$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Chan, Kwing Lam</contributor><creatorcontrib>Arminjon, Mayeul</creatorcontrib><title>Spectral Energy Density in an Axisymmetric Galaxy as Predicted by an Analytical Model for the Maxwell Field</title><title>Advances in astronomy</title><description>An analytical model for the Maxwell radiation field in an axisymmetric galaxy, proposed previously, is first checked for its predictions of the spatial variation of the spectral energy distributions (SEDs) in our Galaxy. First, the model is summarized. It is now shown how to compute the SED with this model. Then the model is adjusted by asking that the SED predicted at our local position in the Galaxy coincides with the available observations. Finally, the first predictions of the model for the spatial variation of the SED in the Galaxy are compared with those of a radiation transfer model. We find that the two predictions do not differ too much. This indicates that, in a future work, it should be possible with the present model to check if the “interaction energy” predicted by an alternative, scalar theory of gravitation, contributes to the dark matter.</description><subject>Astrophysics</subject><subject>Classical Physics</subject><subject>Computational Physics</subject><subject>Cosmic rays</subject><subject>Dark matter</subject><subject>Dust</subject><subject>Energy</subject><subject>Flux density</subject><subject>Galactic Astrophysics</subject><subject>Galaxies</subject><subject>Gravitation theory</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Radiation</subject><subject>Stars &amp; galaxies</subject><subject>Symmetry</subject><issn>1687-7969</issn><issn>1687-7977</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV1rFDEUhgdRsNTe-QMCXomuPfmeXC61X7BFQb0OZ5JMm5qdWZNpu_PvzXaXgjdenXB4eHhP3qZ5T-ELpVKeMmD0VEomFMCr5oiqVi-00fr1y1uZt81JKbEDITRrGeVHze8fm-CmjImcDyHfzuRrGEqcZhIHggNZbmOZ1-sw5ejIJSbczgQL-Z6Dj24KnnTzMzZgmqfoquZm9CGRfsxkugvkBrdPISVyEUPy75o3PaYSTg7zuPl1cf7z7Gqx-nZ5fbZcLZwEMS2MwKAdZ5wjY6JzFELv6iUSTKu0UuCoogYpM8ZLbQx1PXrtOi6lFM4Yftxc771-xHu7yXGNebYjRvu8GPOtxVzTpmC5ANdLT0UnvEDHWwHQMg8BPdWAUF0f9647TP-orpYru9sBpwpq2EdW2Q97dpPHPw-hTPZ-fMj1a4plUlHOlKKyUp_3lMtjKTn0L1oKdtek3TVpD01W_NMhQBw8PsX_038B1CuaIg</recordid><startdate>20210802</startdate><enddate>20210802</enddate><creator>Arminjon, Mayeul</creator><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi Publishing Corporation</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7035-351X</orcidid></search><sort><creationdate>20210802</creationdate><title>Spectral Energy Density in an Axisymmetric Galaxy as Predicted by an Analytical Model for the Maxwell Field</title><author>Arminjon, Mayeul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-94ae7c3233a224bc10efc797509867660c1619a1299d57991cfad7cb35554c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Classical Physics</topic><topic>Computational Physics</topic><topic>Cosmic rays</topic><topic>Dark matter</topic><topic>Dust</topic><topic>Energy</topic><topic>Flux density</topic><topic>Galactic Astrophysics</topic><topic>Galaxies</topic><topic>Gravitation theory</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Radiation</topic><topic>Stars &amp; galaxies</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arminjon, Mayeul</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arminjon, Mayeul</au><au>Chan, Kwing Lam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Energy Density in an Axisymmetric Galaxy as Predicted by an Analytical Model for the Maxwell Field</atitle><jtitle>Advances in astronomy</jtitle><date>2021-08-02</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1687-7969</issn><eissn>1687-7977</eissn><abstract>An analytical model for the Maxwell radiation field in an axisymmetric galaxy, proposed previously, is first checked for its predictions of the spatial variation of the spectral energy distributions (SEDs) in our Galaxy. First, the model is summarized. It is now shown how to compute the SED with this model. Then the model is adjusted by asking that the SED predicted at our local position in the Galaxy coincides with the available observations. Finally, the first predictions of the model for the spatial variation of the SED in the Galaxy are compared with those of a radiation transfer model. We find that the two predictions do not differ too much. This indicates that, in a future work, it should be possible with the present model to check if the “interaction energy” predicted by an alternative, scalar theory of gravitation, contributes to the dark matter.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/5524600</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7035-351X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-7969
ispartof Advances in astronomy, 2021-08, Vol.2021, p.1-13
issn 1687-7969
1687-7977
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_340cf5d14b4d4ac3840082d0ead170a0
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Astrophysics
Classical Physics
Computational Physics
Cosmic rays
Dark matter
Dust
Energy
Flux density
Galactic Astrophysics
Galaxies
Gravitation theory
Mathematical models
Physics
Radiation
Stars & galaxies
Symmetry
title Spectral Energy Density in an Axisymmetric Galaxy as Predicted by an Analytical Model for the Maxwell Field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T16%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Energy%20Density%20in%20an%20Axisymmetric%20Galaxy%20as%20Predicted%20by%20an%20Analytical%20Model%20for%20the%20Maxwell%20Field&rft.jtitle=Advances%20in%20astronomy&rft.au=Arminjon,%20Mayeul&rft.date=2021-08-02&rft.volume=2021&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1687-7969&rft.eissn=1687-7977&rft_id=info:doi/10.1155/2021/5524600&rft_dat=%3Cproquest_doaj_%3E2561326615%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-94ae7c3233a224bc10efc797509867660c1619a1299d57991cfad7cb35554c993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2561326615&rft_id=info:pmid/&rfr_iscdi=true