Loading…
Comprehensive In Silico Screening of the Antiviral Potentialities of a New Humulene Glucoside from Asteriscus hierochunticus against SARS-CoV-2
Chromatographic fractionation of the methanolic extract of Asteriscus hierochunticus whole plant led to the identification of a new humulene glucoside (1). The chemical structure of the isolated compound was elucidated by IR, 1D, 2D NMR, and HRESIMS data analysis to be (-)-(2Z,6E,9E)8α-hydroxy-2,6,9...
Saved in:
Published in: | Journal of chemistry 2021-08, Vol.2021, p.1-14 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chromatographic fractionation of the methanolic extract of Asteriscus hierochunticus whole plant led to the identification of a new humulene glucoside (1). The chemical structure of the isolated compound was elucidated by IR, 1D, 2D NMR, and HRESIMS data analysis to be (-)-(2Z,6E,9E)8α-hydroxy-2,6,9-humulatrien-1(12)-olide. In this study, we report the in silico binding affinities of 1 against four different SARS-CoV-2 proteins (COVID-19 main protease (PDB ID: 6lu7), nonstructural protein (PDB ID: 6W4H), RNA-dependent RNA polymerase (PDB ID: 7BV2), and SARS-CoV-2 helicase (PDB ID: 5RMM)). The isolated compound showed excellent binding affinity values (ΔG) of −21.65, −20.05, −28.93, and −21.73 kcal/mol, respectively, against the target proteins compared to the cocrystallized ligands that exhibited ΔG values of −23.75, −17.65, −23.57, and −15.30 kcal/mol, respectively. Further in silico investigations of the isolated compound (1) for its ADMET and toxicity profiles revealed excellent drug likeliness. On the other hand, the results obtained from in vitro antitrypanosomal, antileishmanial, and antimalarial activities of (1) were not promising. |
---|---|
ISSN: | 2090-9063 2090-9071 |
DOI: | 10.1155/2021/5541876 |