Loading…

Comprehensive In Silico Screening of the Antiviral Potentialities of a New Humulene Glucoside from Asteriscus hierochunticus against SARS-CoV-2

Chromatographic fractionation of the methanolic extract of Asteriscus hierochunticus whole plant led to the identification of a new humulene glucoside (1). The chemical structure of the isolated compound was elucidated by IR, 1D, 2D NMR, and HRESIMS data analysis to be (-)-(2Z,6E,9E)8α-hydroxy-2,6,9...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemistry 2021-08, Vol.2021, p.1-14
Main Authors: Imieje, Vincent O., Zaki, Ahmed A., Metwaly, Ahmed M., Mostafa, Ahmad E., Elkaeed, Eslam B., Falodun, Abiodun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chromatographic fractionation of the methanolic extract of Asteriscus hierochunticus whole plant led to the identification of a new humulene glucoside (1). The chemical structure of the isolated compound was elucidated by IR, 1D, 2D NMR, and HRESIMS data analysis to be (-)-(2Z,6E,9E)8α-hydroxy-2,6,9-humulatrien-1(12)-olide. In this study, we report the in silico binding affinities of 1 against four different SARS-CoV-2 proteins (COVID-19 main protease (PDB ID: 6lu7), nonstructural protein (PDB ID: 6W4H), RNA-dependent RNA polymerase (PDB ID: 7BV2), and SARS-CoV-2 helicase (PDB ID: 5RMM)). The isolated compound showed excellent binding affinity values (ΔG) of −21.65, −20.05, −28.93, and −21.73 kcal/mol, respectively, against the target proteins compared to the cocrystallized ligands that exhibited ΔG values of −23.75, −17.65, −23.57, and −15.30 kcal/mol, respectively. Further in silico investigations of the isolated compound (1) for its ADMET and toxicity profiles revealed excellent drug likeliness. On the other hand, the results obtained from in vitro antitrypanosomal, antileishmanial, and antimalarial activities of (1) were not promising.
ISSN:2090-9063
2090-9071
DOI:10.1155/2021/5541876