Loading…
Global parameter estimation methods for stochastic biochemical systems
The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system p...
Saved in:
Published in: | BMC bioinformatics 2010-08, Vol.11 (1), p.414-414, Article 414 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b681t-139cb15f43625784878d94dd0cdafca3553e086222208abe1a464832ab6743903 |
---|---|
cites | cdi_FETCH-LOGICAL-b681t-139cb15f43625784878d94dd0cdafca3553e086222208abe1a464832ab6743903 |
container_end_page | 414 |
container_issue | 1 |
container_start_page | 414 |
container_title | BMC bioinformatics |
container_volume | 11 |
creator | Poovathingal, Suresh Kumar Gunawan, Rudiyanto |
description | The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data.
Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality.
The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data. |
doi_str_mv | 10.1186/1471-2105-11-414 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3420e7b4000d4fafb8cf74d009907d38</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A235657515</galeid><doaj_id>oai_doaj_org_article_3420e7b4000d4fafb8cf74d009907d38</doaj_id><sourcerecordid>A235657515</sourcerecordid><originalsourceid>FETCH-LOGICAL-b681t-139cb15f43625784878d94dd0cdafca3553e086222208abe1a464832ab6743903</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqVw54QiOCAOKeOP2M6lUrWiZaVKSHycLcd2drNK4sXOIvrvmZCyalAR9sHWzDuPRvNOlr0kcE6IEu8Jl6SgBMqCkIIT_ig7PYYe3_ufZM9S2gEQqaB8mp1QEBUBJk-zq-su1KbL9yaa3o8-5j6NbW_GNgw5BrbBpbwJMU9jsFuDOZvXLX5931qsS7dp9H16nj1pTJf8i7v3LPt29eHr6mNx8-l6vbq8KWqhyFgQVtmalA1ngpZScSWVq7hzYJ1prGFlyTwoQfGAMrUnhguuGDW1kJxVwM6y9cx1wez0PmKn8VYH0-rfgRA32kTssfOacQpe1hwAHG9MUyvbSO4AqgqkYwpZFzNrf6h776wfxmi6BXSZGdqt3oQfmlZUKWAIWM0AHMg_AMuMDb2ePNGTJ5oQjZYh5e1dGzF8P-D0dd8m67vODD4cklZSCqBC_F8peQWEChCofP2XchcOcUBnNEpUSaCacG9m0cbguNqhCdiknZD6krJSlLIkJarOH1DhddMGhME3LcYXBe8WBagZ_c9xYw4p6fWXz0stzFobQ0rRN8fhEdDThj80rlf3XTsW_Flp9guwwvK9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901851094</pqid></control><display><type>article</type><title>Global parameter estimation methods for stochastic biochemical systems</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Poovathingal, Suresh Kumar ; Gunawan, Rudiyanto</creator><creatorcontrib>Poovathingal, Suresh Kumar ; Gunawan, Rudiyanto</creatorcontrib><description>The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data.
Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality.
The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-11-414</identifier><identifier>PMID: 20691037</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Computational biology ; Escherichia coli - metabolism ; Galactose - metabolism ; Mathematical models ; Methodology ; Models, Biological ; Monte Carlo Method ; Parameter estimation ; RNA, Bacterial - metabolism ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae - metabolism ; Stochastic models ; Studies</subject><ispartof>BMC bioinformatics, 2010-08, Vol.11 (1), p.414-414, Article 414</ispartof><rights>COPYRIGHT 2010 BioMed Central Ltd.</rights><rights>2010 Poovathingal and Gunawan; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2010 Poovathingal and Gunawan; licensee BioMed Central Ltd. 2010 Poovathingal and Gunawan; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b681t-139cb15f43625784878d94dd0cdafca3553e086222208abe1a464832ab6743903</citedby><cites>FETCH-LOGICAL-b681t-139cb15f43625784878d94dd0cdafca3553e086222208abe1a464832ab6743903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928803/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/901851094?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20691037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poovathingal, Suresh Kumar</creatorcontrib><creatorcontrib>Gunawan, Rudiyanto</creatorcontrib><title>Global parameter estimation methods for stochastic biochemical systems</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data.
Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality.
The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data.</description><subject>Computational biology</subject><subject>Escherichia coli - metabolism</subject><subject>Galactose - metabolism</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>Parameter estimation</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk1v1DAQhiMEoqVw54QiOCAOKeOP2M6lUrWiZaVKSHycLcd2drNK4sXOIvrvmZCyalAR9sHWzDuPRvNOlr0kcE6IEu8Jl6SgBMqCkIIT_ig7PYYe3_ufZM9S2gEQqaB8mp1QEBUBJk-zq-su1KbL9yaa3o8-5j6NbW_GNgw5BrbBpbwJMU9jsFuDOZvXLX5931qsS7dp9H16nj1pTJf8i7v3LPt29eHr6mNx8-l6vbq8KWqhyFgQVtmalA1ngpZScSWVq7hzYJ1prGFlyTwoQfGAMrUnhguuGDW1kJxVwM6y9cx1wez0PmKn8VYH0-rfgRA32kTssfOacQpe1hwAHG9MUyvbSO4AqgqkYwpZFzNrf6h776wfxmi6BXSZGdqt3oQfmlZUKWAIWM0AHMg_AMuMDb2ePNGTJ5oQjZYh5e1dGzF8P-D0dd8m67vODD4cklZSCqBC_F8peQWEChCofP2XchcOcUBnNEpUSaCacG9m0cbguNqhCdiknZD6krJSlLIkJarOH1DhddMGhME3LcYXBe8WBagZ_c9xYw4p6fWXz0stzFobQ0rRN8fhEdDThj80rlf3XTsW_Flp9guwwvK9</recordid><startdate>20100806</startdate><enddate>20100806</enddate><creator>Poovathingal, Suresh Kumar</creator><creator>Gunawan, Rudiyanto</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100806</creationdate><title>Global parameter estimation methods for stochastic biochemical systems</title><author>Poovathingal, Suresh Kumar ; Gunawan, Rudiyanto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b681t-139cb15f43625784878d94dd0cdafca3553e086222208abe1a464832ab6743903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computational biology</topic><topic>Escherichia coli - metabolism</topic><topic>Galactose - metabolism</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>Parameter estimation</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poovathingal, Suresh Kumar</creatorcontrib><creatorcontrib>Gunawan, Rudiyanto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poovathingal, Suresh Kumar</au><au>Gunawan, Rudiyanto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global parameter estimation methods for stochastic biochemical systems</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2010-08-06</date><risdate>2010</risdate><volume>11</volume><issue>1</issue><spage>414</spage><epage>414</epage><pages>414-414</pages><artnum>414</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data.
Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality.
The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>20691037</pmid><doi>10.1186/1471-2105-11-414</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2010-08, Vol.11 (1), p.414-414, Article 414 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3420e7b4000d4fafb8cf74d009907d38 |
source | Publicly Available Content Database; PubMed Central |
subjects | Computational biology Escherichia coli - metabolism Galactose - metabolism Mathematical models Methodology Models, Biological Monte Carlo Method Parameter estimation RNA, Bacterial - metabolism RNA, Messenger - metabolism Saccharomyces cerevisiae - metabolism Stochastic models Studies |
title | Global parameter estimation methods for stochastic biochemical systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20parameter%20estimation%20methods%20for%20stochastic%20biochemical%20systems&rft.jtitle=BMC%20bioinformatics&rft.au=Poovathingal,%20Suresh%20Kumar&rft.date=2010-08-06&rft.volume=11&rft.issue=1&rft.spage=414&rft.epage=414&rft.pages=414-414&rft.artnum=414&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-11-414&rft_dat=%3Cgale_doaj_%3EA235657515%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b681t-139cb15f43625784878d94dd0cdafca3553e086222208abe1a464832ab6743903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901851094&rft_id=info:pmid/20691037&rft_galeid=A235657515&rfr_iscdi=true |