Loading…

Eighteen years of upland grassland carbon flux data: reference datasets, processing, and gap-filling procedure

Plant-atmosphere exchange fluxes of CO 2 measured with the Eddy covariance method are used extensively for the assessment of ecosystem carbon budgets worldwide. The present paper describes eddy flux measurements for a managed upland grassland in Central France studied over two decades (2003–2021). W...

Full description

Saved in:
Bibliographic Details
Published in:Scientific data 2023-05, Vol.10 (1), p.311-311, Article 311
Main Authors: Winck, Bruna R., Bloor, Juliette M. G., Klumpp, Katja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant-atmosphere exchange fluxes of CO 2 measured with the Eddy covariance method are used extensively for the assessment of ecosystem carbon budgets worldwide. The present paper describes eddy flux measurements for a managed upland grassland in Central France studied over two decades (2003–2021). We present the site meteorological data for this measurement period, and we describe the pre-processing and post-processing approaches used to overcome issues of data gaps, commonly associated with long-term EC datasets. Recent progress in eddy flux technology and machine learning now paves the way to produce robust long-term datasets, based on normalised data processing techniques, but such reference datasets remain rare for grasslands. Here, we combined two gap-filling techniques, Marginal Distribution Sampling (short gaps) and Random Forest (long gaps), to complete two reference flux datasets at the half-hour and daily-scales respectively. The resulting datasets are valuable for assessing the response of grassland ecosystems to (past) climate change, but also for model evaluation and validation with respect to future global change research with the carbon-cycle community.
ISSN:2052-4463
2052-4463
DOI:10.1038/s41597-023-02221-z