Loading…

Eighteen years of upland grassland carbon flux data: reference datasets, processing, and gap-filling procedure

Plant-atmosphere exchange fluxes of CO 2 measured with the Eddy covariance method are used extensively for the assessment of ecosystem carbon budgets worldwide. The present paper describes eddy flux measurements for a managed upland grassland in Central France studied over two decades (2003–2021). W...

Full description

Saved in:
Bibliographic Details
Published in:Scientific data 2023-05, Vol.10 (1), p.311-311, Article 311
Main Authors: Winck, Bruna R., Bloor, Juliette M. G., Klumpp, Katja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c526t-8b878067e6ac9489a224e8bd2c03d73624fc74224161f8a6401dd87d00bfef6c3
container_end_page 311
container_issue 1
container_start_page 311
container_title Scientific data
container_volume 10
creator Winck, Bruna R.
Bloor, Juliette M. G.
Klumpp, Katja
description Plant-atmosphere exchange fluxes of CO 2 measured with the Eddy covariance method are used extensively for the assessment of ecosystem carbon budgets worldwide. The present paper describes eddy flux measurements for a managed upland grassland in Central France studied over two decades (2003–2021). We present the site meteorological data for this measurement period, and we describe the pre-processing and post-processing approaches used to overcome issues of data gaps, commonly associated with long-term EC datasets. Recent progress in eddy flux technology and machine learning now paves the way to produce robust long-term datasets, based on normalised data processing techniques, but such reference datasets remain rare for grasslands. Here, we combined two gap-filling techniques, Marginal Distribution Sampling (short gaps) and Random Forest (long gaps), to complete two reference flux datasets at the half-hour and daily-scales respectively. The resulting datasets are valuable for assessing the response of grassland ecosystems to (past) climate change, but also for model evaluation and validation with respect to future global change research with the carbon-cycle community.
doi_str_mv 10.1038/s41597-023-02221-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_34215740a7034fffb3c0ca95ac62a8cd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_34215740a7034fffb3c0ca95ac62a8cd</doaj_id><sourcerecordid>2817956412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-8b878067e6ac9489a224e8bd2c03d73624fc74224161f8a6401dd87d00bfef6c3</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRCIVqV_gAOKxAWkBvwV2-FSVVVLK63EBc6WY4-zWWXtxU4q2l9fb1JK2wMHy-OZ997YnlcU7zH6ghGVXxPDdSMqRGhehODq7lVxSFBNKsY4ff0kPiiOU9oghDBlqBbobXFARWYQUh8W_qLv1iOAL29Bx1QGV067QXtbdlGnNEdGxzb40g3Tn9LqUX8rIziI4A3M5wRjOil3MRhIqffdSTnz9a5y_TDkxFKzU4R3xRunhwTHD_tR8evy4uf5VbX68f36_GxVmZrwsZKtFBJxAVybhslGE8JAtpYYRK2gnDBnBMtJzLGTmjOErZXCItQ6cNzQo-J60bVBb9Qu9lsdb1XQvZoTIXZKx7E3AyjKCK4FQ1ogypxzLTXI6KbWhhMtjc1ap4vWbmq3YA34Merhmejziu_Xqgs3CiOy_-86K3xeFNYveFdnK7XPIYaplATf4Iz99NAtht8TpFFt-2RgyJOAMCVFJJaCybrhGfrxBXQTpujzv-5Roqk5wySjyIIyMaSUJ_d4A4zU3kpqsZLKVlKzldRdJn14-uZHyl_jZABdACmXfAfxX-__yN4D2DjULw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817956412</pqid></control><display><type>article</type><title>Eighteen years of upland grassland carbon flux data: reference datasets, processing, and gap-filling procedure</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Winck, Bruna R. ; Bloor, Juliette M. G. ; Klumpp, Katja</creator><creatorcontrib>Winck, Bruna R. ; Bloor, Juliette M. G. ; Klumpp, Katja</creatorcontrib><description>Plant-atmosphere exchange fluxes of CO 2 measured with the Eddy covariance method are used extensively for the assessment of ecosystem carbon budgets worldwide. The present paper describes eddy flux measurements for a managed upland grassland in Central France studied over two decades (2003–2021). We present the site meteorological data for this measurement period, and we describe the pre-processing and post-processing approaches used to overcome issues of data gaps, commonly associated with long-term EC datasets. Recent progress in eddy flux technology and machine learning now paves the way to produce robust long-term datasets, based on normalised data processing techniques, but such reference datasets remain rare for grasslands. Here, we combined two gap-filling techniques, Marginal Distribution Sampling (short gaps) and Random Forest (long gaps), to complete two reference flux datasets at the half-hour and daily-scales respectively. The resulting datasets are valuable for assessing the response of grassland ecosystems to (past) climate change, but also for model evaluation and validation with respect to future global change research with the carbon-cycle community.</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/s41597-023-02221-z</identifier><identifier>PMID: 37221225</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/694/2786 ; 704/172/4081 ; Carbon ; Carbon cycle ; Carbon dioxide ; Climate change ; Data Descriptor ; Data processing ; Datasets ; Environmental Sciences ; Grasslands ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific data, 2023-05, Vol.10 (1), p.311-311, Article 311</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c526t-8b878067e6ac9489a224e8bd2c03d73624fc74224161f8a6401dd87d00bfef6c3</cites><orcidid>0000-0002-4799-5231 ; 0000-0002-8668-1323 ; 0000-0002-7996-9855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2817956412/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2817956412?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37221225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-04138821$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Winck, Bruna R.</creatorcontrib><creatorcontrib>Bloor, Juliette M. G.</creatorcontrib><creatorcontrib>Klumpp, Katja</creatorcontrib><title>Eighteen years of upland grassland carbon flux data: reference datasets, processing, and gap-filling procedure</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>Plant-atmosphere exchange fluxes of CO 2 measured with the Eddy covariance method are used extensively for the assessment of ecosystem carbon budgets worldwide. The present paper describes eddy flux measurements for a managed upland grassland in Central France studied over two decades (2003–2021). We present the site meteorological data for this measurement period, and we describe the pre-processing and post-processing approaches used to overcome issues of data gaps, commonly associated with long-term EC datasets. Recent progress in eddy flux technology and machine learning now paves the way to produce robust long-term datasets, based on normalised data processing techniques, but such reference datasets remain rare for grasslands. Here, we combined two gap-filling techniques, Marginal Distribution Sampling (short gaps) and Random Forest (long gaps), to complete two reference flux datasets at the half-hour and daily-scales respectively. The resulting datasets are valuable for assessing the response of grassland ecosystems to (past) climate change, but also for model evaluation and validation with respect to future global change research with the carbon-cycle community.</description><subject>704/106/694/2786</subject><subject>704/172/4081</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Data Descriptor</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Environmental Sciences</subject><subject>Grasslands</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1v1DAQjRCIVqV_gAOKxAWkBvwV2-FSVVVLK63EBc6WY4-zWWXtxU4q2l9fb1JK2wMHy-OZ997YnlcU7zH6ghGVXxPDdSMqRGhehODq7lVxSFBNKsY4ff0kPiiOU9oghDBlqBbobXFARWYQUh8W_qLv1iOAL29Bx1QGV067QXtbdlGnNEdGxzb40g3Tn9LqUX8rIziI4A3M5wRjOil3MRhIqffdSTnz9a5y_TDkxFKzU4R3xRunhwTHD_tR8evy4uf5VbX68f36_GxVmZrwsZKtFBJxAVybhslGE8JAtpYYRK2gnDBnBMtJzLGTmjOErZXCItQ6cNzQo-J60bVBb9Qu9lsdb1XQvZoTIXZKx7E3AyjKCK4FQ1ogypxzLTXI6KbWhhMtjc1ap4vWbmq3YA34Merhmejziu_Xqgs3CiOy_-86K3xeFNYveFdnK7XPIYaplATf4Iz99NAtht8TpFFt-2RgyJOAMCVFJJaCybrhGfrxBXQTpujzv-5Roqk5wySjyIIyMaSUJ_d4A4zU3kpqsZLKVlKzldRdJn14-uZHyl_jZABdACmXfAfxX-__yN4D2DjULw</recordid><startdate>20230523</startdate><enddate>20230523</enddate><creator>Winck, Bruna R.</creator><creator>Bloor, Juliette M. G.</creator><creator>Klumpp, Katja</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4799-5231</orcidid><orcidid>https://orcid.org/0000-0002-8668-1323</orcidid><orcidid>https://orcid.org/0000-0002-7996-9855</orcidid></search><sort><creationdate>20230523</creationdate><title>Eighteen years of upland grassland carbon flux data: reference datasets, processing, and gap-filling procedure</title><author>Winck, Bruna R. ; Bloor, Juliette M. G. ; Klumpp, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-8b878067e6ac9489a224e8bd2c03d73624fc74224161f8a6401dd87d00bfef6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>704/106/694/2786</topic><topic>704/172/4081</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Data Descriptor</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Environmental Sciences</topic><topic>Grasslands</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winck, Bruna R.</creatorcontrib><creatorcontrib>Bloor, Juliette M. G.</creatorcontrib><creatorcontrib>Klumpp, Katja</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winck, Bruna R.</au><au>Bloor, Juliette M. G.</au><au>Klumpp, Katja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eighteen years of upland grassland carbon flux data: reference datasets, processing, and gap-filling procedure</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2023-05-23</date><risdate>2023</risdate><volume>10</volume><issue>1</issue><spage>311</spage><epage>311</epage><pages>311-311</pages><artnum>311</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>Plant-atmosphere exchange fluxes of CO 2 measured with the Eddy covariance method are used extensively for the assessment of ecosystem carbon budgets worldwide. The present paper describes eddy flux measurements for a managed upland grassland in Central France studied over two decades (2003–2021). We present the site meteorological data for this measurement period, and we describe the pre-processing and post-processing approaches used to overcome issues of data gaps, commonly associated with long-term EC datasets. Recent progress in eddy flux technology and machine learning now paves the way to produce robust long-term datasets, based on normalised data processing techniques, but such reference datasets remain rare for grasslands. Here, we combined two gap-filling techniques, Marginal Distribution Sampling (short gaps) and Random Forest (long gaps), to complete two reference flux datasets at the half-hour and daily-scales respectively. The resulting datasets are valuable for assessing the response of grassland ecosystems to (past) climate change, but also for model evaluation and validation with respect to future global change research with the carbon-cycle community.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37221225</pmid><doi>10.1038/s41597-023-02221-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4799-5231</orcidid><orcidid>https://orcid.org/0000-0002-8668-1323</orcidid><orcidid>https://orcid.org/0000-0002-7996-9855</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-4463
ispartof Scientific data, 2023-05, Vol.10 (1), p.311-311, Article 311
issn 2052-4463
2052-4463
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_34215740a7034fffb3c0ca95ac62a8cd
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - nature.com Journals - Fully Open Access
subjects 704/106/694/2786
704/172/4081
Carbon
Carbon cycle
Carbon dioxide
Climate change
Data Descriptor
Data processing
Datasets
Environmental Sciences
Grasslands
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Eighteen years of upland grassland carbon flux data: reference datasets, processing, and gap-filling procedure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eighteen%20years%20of%20upland%20grassland%20carbon%20flux%20data:%20reference%20datasets,%20processing,%20and%20gap-filling%20procedure&rft.jtitle=Scientific%20data&rft.au=Winck,%20Bruna%20R.&rft.date=2023-05-23&rft.volume=10&rft.issue=1&rft.spage=311&rft.epage=311&rft.pages=311-311&rft.artnum=311&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/s41597-023-02221-z&rft_dat=%3Cproquest_doaj_%3E2817956412%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-8b878067e6ac9489a224e8bd2c03d73624fc74224161f8a6401dd87d00bfef6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2817956412&rft_id=info:pmid/37221225&rfr_iscdi=true