Loading…
Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine
Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than uni...
Saved in:
Published in: | G3 : genes - genomes - genetics 2021-09, Vol.11 (9) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63 |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | G3 : genes - genomes - genetics |
container_volume | 11 |
creator | Brault, Charlotte Doligez, Agnès Cunff, Le Coupel-Ledru, Aude Simonneau, Thierry Chiquet, Julien This, Patrice Flutre, Timothée |
description | Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding. |
doi_str_mv | 10.1093/g3journal/jkab248 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3426fa2c1e11455e89aaa52e529fbfca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/g3journal/jkab248</oup_id><doaj_id>oai_doaj_org_article_3426fa2c1e11455e89aaa52e529fbfca</doaj_id><sourcerecordid>2575065242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxSMEolXpB-DmI0hd6v-bXJCqCrqVVkJI5WxNnEnWS2IH21kJ7nxvss2qopzwxdabNz-PrVcUbxn9wGglrjuxD1P00F_vv0PNZfmiOOdM0xUrhX751_msuExpT-ellNZSvy7OhFRSMqnPi98biB5Tcr4jw9Rnd4DoIOMVGXFmu1_YkIhdPFqCJwPmXWgSaUMkHfowOEvGiI2z-VgG35CvD1vSYMZFCS1pYpi6XV5F7GdwQ3IElxNxnnQRRjw4j2-KVy30CS9P-0Xx7fOnh9vNavvl7v72ZruyqqR5JRW0FS1LbFsQABaVWreKllY28w-shcRK81pTBlaX61JzixWImrIaecVQi4vifuE2AfZmjG6A-NMEcOZRCLEzELOzPRohuW6BW4aMSaWwrABAcVS8auvWwsz6uLDGqR6wsejnh_XPoM8r3u1MFw6mlPOUgs-A9wtg90_b5mZrjhoV8xCSVgc2e9-dLovhx4Qpm8Eli30PHsOUDFdrRbXi8ohli9XGkFLE9onNqDkmxzwlx5ySM_dcLT1hGv_D_gfeKMuV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575065242</pqid></control><display><type>article</type><title>Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine</title><source>OUP_牛津大学出版社OA刊</source><source>PubMed</source><creator>Brault, Charlotte ; Doligez, Agnès ; Cunff, Le ; Coupel-Ledru, Aude ; Simonneau, Thierry ; Chiquet, Julien ; This, Patrice ; Flutre, Timothée</creator><contributor>Jannink, J-L</contributor><creatorcontrib>Brault, Charlotte ; Doligez, Agnès ; Cunff, Le ; Coupel-Ledru, Aude ; Simonneau, Thierry ; Chiquet, Julien ; This, Patrice ; Flutre, Timothée ; Jannink, J-L</creatorcontrib><description>Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.</description><identifier>ISSN: 2160-1836</identifier><identifier>EISSN: 2160-1836</identifier><identifier>DOI: 10.1093/g3journal/jkab248</identifier><identifier>PMID: 34544146</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Biochemistry, Molecular Biology ; Genomics ; Investigation ; Life Sciences</subject><ispartof>G3 : genes - genomes - genetics, 2021-09, Vol.11 (9)</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America. 2021</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63</citedby><cites>FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63</cites><orcidid>0000-0001-7892-4236 ; 0000-0003-2097-5924 ; 0000-0002-3629-3429 ; 0000-0002-3024-5813 ; 0000-0003-4489-4782 ; 0000-0002-3159-5903 ; 0000-0001-5636-9534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496232/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496232/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03342409$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Jannink, J-L</contributor><creatorcontrib>Brault, Charlotte</creatorcontrib><creatorcontrib>Doligez, Agnès</creatorcontrib><creatorcontrib>Cunff, Le</creatorcontrib><creatorcontrib>Coupel-Ledru, Aude</creatorcontrib><creatorcontrib>Simonneau, Thierry</creatorcontrib><creatorcontrib>Chiquet, Julien</creatorcontrib><creatorcontrib>This, Patrice</creatorcontrib><creatorcontrib>Flutre, Timothée</creatorcontrib><title>Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine</title><title>G3 : genes - genomes - genetics</title><description>Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.</description><subject>Biochemistry, Molecular Biology</subject><subject>Genomics</subject><subject>Investigation</subject><subject>Life Sciences</subject><issn>2160-1836</issn><issn>2160-1836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk9v1DAQxSMEolXpB-DmI0hd6v-bXJCqCrqVVkJI5WxNnEnWS2IH21kJ7nxvss2qopzwxdabNz-PrVcUbxn9wGglrjuxD1P00F_vv0PNZfmiOOdM0xUrhX751_msuExpT-ellNZSvy7OhFRSMqnPi98biB5Tcr4jw9Rnd4DoIOMVGXFmu1_YkIhdPFqCJwPmXWgSaUMkHfowOEvGiI2z-VgG35CvD1vSYMZFCS1pYpi6XV5F7GdwQ3IElxNxnnQRRjw4j2-KVy30CS9P-0Xx7fOnh9vNavvl7v72ZruyqqR5JRW0FS1LbFsQABaVWreKllY28w-shcRK81pTBlaX61JzixWImrIaecVQi4vifuE2AfZmjG6A-NMEcOZRCLEzELOzPRohuW6BW4aMSaWwrABAcVS8auvWwsz6uLDGqR6wsejnh_XPoM8r3u1MFw6mlPOUgs-A9wtg90_b5mZrjhoV8xCSVgc2e9-dLovhx4Qpm8Eli30PHsOUDFdrRbXi8ohli9XGkFLE9onNqDkmxzwlx5ySM_dcLT1hGv_D_gfeKMuV</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Brault, Charlotte</creator><creator>Doligez, Agnès</creator><creator>Cunff, Le</creator><creator>Coupel-Ledru, Aude</creator><creator>Simonneau, Thierry</creator><creator>Chiquet, Julien</creator><creator>This, Patrice</creator><creator>Flutre, Timothée</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7892-4236</orcidid><orcidid>https://orcid.org/0000-0003-2097-5924</orcidid><orcidid>https://orcid.org/0000-0002-3629-3429</orcidid><orcidid>https://orcid.org/0000-0002-3024-5813</orcidid><orcidid>https://orcid.org/0000-0003-4489-4782</orcidid><orcidid>https://orcid.org/0000-0002-3159-5903</orcidid><orcidid>https://orcid.org/0000-0001-5636-9534</orcidid></search><sort><creationdate>20210901</creationdate><title>Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine</title><author>Brault, Charlotte ; Doligez, Agnès ; Cunff, Le ; Coupel-Ledru, Aude ; Simonneau, Thierry ; Chiquet, Julien ; This, Patrice ; Flutre, Timothée</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Genomics</topic><topic>Investigation</topic><topic>Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brault, Charlotte</creatorcontrib><creatorcontrib>Doligez, Agnès</creatorcontrib><creatorcontrib>Cunff, Le</creatorcontrib><creatorcontrib>Coupel-Ledru, Aude</creatorcontrib><creatorcontrib>Simonneau, Thierry</creatorcontrib><creatorcontrib>Chiquet, Julien</creatorcontrib><creatorcontrib>This, Patrice</creatorcontrib><creatorcontrib>Flutre, Timothée</creatorcontrib><collection>OUP_牛津大学出版社OA刊</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>G3 : genes - genomes - genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brault, Charlotte</au><au>Doligez, Agnès</au><au>Cunff, Le</au><au>Coupel-Ledru, Aude</au><au>Simonneau, Thierry</au><au>Chiquet, Julien</au><au>This, Patrice</au><au>Flutre, Timothée</au><au>Jannink, J-L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine</atitle><jtitle>G3 : genes - genomes - genetics</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>11</volume><issue>9</issue><issn>2160-1836</issn><eissn>2160-1836</eissn><abstract>Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.</abstract><pub>Oxford University Press</pub><pmid>34544146</pmid><doi>10.1093/g3journal/jkab248</doi><orcidid>https://orcid.org/0000-0001-7892-4236</orcidid><orcidid>https://orcid.org/0000-0003-2097-5924</orcidid><orcidid>https://orcid.org/0000-0002-3629-3429</orcidid><orcidid>https://orcid.org/0000-0002-3024-5813</orcidid><orcidid>https://orcid.org/0000-0003-4489-4782</orcidid><orcidid>https://orcid.org/0000-0002-3159-5903</orcidid><orcidid>https://orcid.org/0000-0001-5636-9534</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-1836 |
ispartof | G3 : genes - genomes - genetics, 2021-09, Vol.11 (9) |
issn | 2160-1836 2160-1836 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3426fa2c1e11455e89aaa52e529fbfca |
source | OUP_牛津大学出版社OA刊; PubMed |
subjects | Biochemistry, Molecular Biology Genomics Investigation Life Sciences |
title | Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20multivariate,%20penalized%20regression%20methods%20for%20genomic%20prediction%20and%20QTL%20detection%20of%20drought-related%20traits%20in%20grapevine&rft.jtitle=G3%20:%20genes%20-%20genomes%20-%20genetics&rft.au=Brault,%20Charlotte&rft.date=2021-09-01&rft.volume=11&rft.issue=9&rft.issn=2160-1836&rft.eissn=2160-1836&rft_id=info:doi/10.1093/g3journal/jkab248&rft_dat=%3Cproquest_doaj_%3E2575065242%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575065242&rft_id=info:pmid/34544146&rft_oup_id=10.1093/g3journal/jkab248&rfr_iscdi=true |