Loading…

Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine

Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than uni...

Full description

Saved in:
Bibliographic Details
Published in:G3 : genes - genomes - genetics 2021-09, Vol.11 (9)
Main Authors: Brault, Charlotte, Doligez, Agnès, Cunff, Le, Coupel-Ledru, Aude, Simonneau, Thierry, Chiquet, Julien, This, Patrice, Flutre, Timothée
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63
cites cdi_FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63
container_end_page
container_issue 9
container_start_page
container_title G3 : genes - genomes - genetics
container_volume 11
creator Brault, Charlotte
Doligez, Agnès
Cunff, Le
Coupel-Ledru, Aude
Simonneau, Thierry
Chiquet, Julien
This, Patrice
Flutre, Timothée
description Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.
doi_str_mv 10.1093/g3journal/jkab248
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3426fa2c1e11455e89aaa52e529fbfca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/g3journal/jkab248</oup_id><doaj_id>oai_doaj_org_article_3426fa2c1e11455e89aaa52e529fbfca</doaj_id><sourcerecordid>2575065242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxSMEolXpB-DmI0hd6v-bXJCqCrqVVkJI5WxNnEnWS2IH21kJ7nxvss2qopzwxdabNz-PrVcUbxn9wGglrjuxD1P00F_vv0PNZfmiOOdM0xUrhX751_msuExpT-ellNZSvy7OhFRSMqnPi98biB5Tcr4jw9Rnd4DoIOMVGXFmu1_YkIhdPFqCJwPmXWgSaUMkHfowOEvGiI2z-VgG35CvD1vSYMZFCS1pYpi6XV5F7GdwQ3IElxNxnnQRRjw4j2-KVy30CS9P-0Xx7fOnh9vNavvl7v72ZruyqqR5JRW0FS1LbFsQABaVWreKllY28w-shcRK81pTBlaX61JzixWImrIaecVQi4vifuE2AfZmjG6A-NMEcOZRCLEzELOzPRohuW6BW4aMSaWwrABAcVS8auvWwsz6uLDGqR6wsejnh_XPoM8r3u1MFw6mlPOUgs-A9wtg90_b5mZrjhoV8xCSVgc2e9-dLovhx4Qpm8Eli30PHsOUDFdrRbXi8ohli9XGkFLE9onNqDkmxzwlx5ySM_dcLT1hGv_D_gfeKMuV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575065242</pqid></control><display><type>article</type><title>Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine</title><source>OUP_牛津大学出版社OA刊</source><source>PubMed</source><creator>Brault, Charlotte ; Doligez, Agnès ; Cunff, Le ; Coupel-Ledru, Aude ; Simonneau, Thierry ; Chiquet, Julien ; This, Patrice ; Flutre, Timothée</creator><contributor>Jannink, J-L</contributor><creatorcontrib>Brault, Charlotte ; Doligez, Agnès ; Cunff, Le ; Coupel-Ledru, Aude ; Simonneau, Thierry ; Chiquet, Julien ; This, Patrice ; Flutre, Timothée ; Jannink, J-L</creatorcontrib><description>Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.</description><identifier>ISSN: 2160-1836</identifier><identifier>EISSN: 2160-1836</identifier><identifier>DOI: 10.1093/g3journal/jkab248</identifier><identifier>PMID: 34544146</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Biochemistry, Molecular Biology ; Genomics ; Investigation ; Life Sciences</subject><ispartof>G3 : genes - genomes - genetics, 2021-09, Vol.11 (9)</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America. 2021</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63</citedby><cites>FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63</cites><orcidid>0000-0001-7892-4236 ; 0000-0003-2097-5924 ; 0000-0002-3629-3429 ; 0000-0002-3024-5813 ; 0000-0003-4489-4782 ; 0000-0002-3159-5903 ; 0000-0001-5636-9534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496232/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496232/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03342409$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Jannink, J-L</contributor><creatorcontrib>Brault, Charlotte</creatorcontrib><creatorcontrib>Doligez, Agnès</creatorcontrib><creatorcontrib>Cunff, Le</creatorcontrib><creatorcontrib>Coupel-Ledru, Aude</creatorcontrib><creatorcontrib>Simonneau, Thierry</creatorcontrib><creatorcontrib>Chiquet, Julien</creatorcontrib><creatorcontrib>This, Patrice</creatorcontrib><creatorcontrib>Flutre, Timothée</creatorcontrib><title>Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine</title><title>G3 : genes - genomes - genetics</title><description>Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.</description><subject>Biochemistry, Molecular Biology</subject><subject>Genomics</subject><subject>Investigation</subject><subject>Life Sciences</subject><issn>2160-1836</issn><issn>2160-1836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk9v1DAQxSMEolXpB-DmI0hd6v-bXJCqCrqVVkJI5WxNnEnWS2IH21kJ7nxvss2qopzwxdabNz-PrVcUbxn9wGglrjuxD1P00F_vv0PNZfmiOOdM0xUrhX751_msuExpT-ellNZSvy7OhFRSMqnPi98biB5Tcr4jw9Rnd4DoIOMVGXFmu1_YkIhdPFqCJwPmXWgSaUMkHfowOEvGiI2z-VgG35CvD1vSYMZFCS1pYpi6XV5F7GdwQ3IElxNxnnQRRjw4j2-KVy30CS9P-0Xx7fOnh9vNavvl7v72ZruyqqR5JRW0FS1LbFsQABaVWreKllY28w-shcRK81pTBlaX61JzixWImrIaecVQi4vifuE2AfZmjG6A-NMEcOZRCLEzELOzPRohuW6BW4aMSaWwrABAcVS8auvWwsz6uLDGqR6wsejnh_XPoM8r3u1MFw6mlPOUgs-A9wtg90_b5mZrjhoV8xCSVgc2e9-dLovhx4Qpm8Eli30PHsOUDFdrRbXi8ohli9XGkFLE9onNqDkmxzwlx5ySM_dcLT1hGv_D_gfeKMuV</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Brault, Charlotte</creator><creator>Doligez, Agnès</creator><creator>Cunff, Le</creator><creator>Coupel-Ledru, Aude</creator><creator>Simonneau, Thierry</creator><creator>Chiquet, Julien</creator><creator>This, Patrice</creator><creator>Flutre, Timothée</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7892-4236</orcidid><orcidid>https://orcid.org/0000-0003-2097-5924</orcidid><orcidid>https://orcid.org/0000-0002-3629-3429</orcidid><orcidid>https://orcid.org/0000-0002-3024-5813</orcidid><orcidid>https://orcid.org/0000-0003-4489-4782</orcidid><orcidid>https://orcid.org/0000-0002-3159-5903</orcidid><orcidid>https://orcid.org/0000-0001-5636-9534</orcidid></search><sort><creationdate>20210901</creationdate><title>Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine</title><author>Brault, Charlotte ; Doligez, Agnès ; Cunff, Le ; Coupel-Ledru, Aude ; Simonneau, Thierry ; Chiquet, Julien ; This, Patrice ; Flutre, Timothée</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Genomics</topic><topic>Investigation</topic><topic>Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brault, Charlotte</creatorcontrib><creatorcontrib>Doligez, Agnès</creatorcontrib><creatorcontrib>Cunff, Le</creatorcontrib><creatorcontrib>Coupel-Ledru, Aude</creatorcontrib><creatorcontrib>Simonneau, Thierry</creatorcontrib><creatorcontrib>Chiquet, Julien</creatorcontrib><creatorcontrib>This, Patrice</creatorcontrib><creatorcontrib>Flutre, Timothée</creatorcontrib><collection>OUP_牛津大学出版社OA刊</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>G3 : genes - genomes - genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brault, Charlotte</au><au>Doligez, Agnès</au><au>Cunff, Le</au><au>Coupel-Ledru, Aude</au><au>Simonneau, Thierry</au><au>Chiquet, Julien</au><au>This, Patrice</au><au>Flutre, Timothée</au><au>Jannink, J-L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine</atitle><jtitle>G3 : genes - genomes - genetics</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>11</volume><issue>9</issue><issn>2160-1836</issn><eissn>2160-1836</eissn><abstract>Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.</abstract><pub>Oxford University Press</pub><pmid>34544146</pmid><doi>10.1093/g3journal/jkab248</doi><orcidid>https://orcid.org/0000-0001-7892-4236</orcidid><orcidid>https://orcid.org/0000-0003-2097-5924</orcidid><orcidid>https://orcid.org/0000-0002-3629-3429</orcidid><orcidid>https://orcid.org/0000-0002-3024-5813</orcidid><orcidid>https://orcid.org/0000-0003-4489-4782</orcidid><orcidid>https://orcid.org/0000-0002-3159-5903</orcidid><orcidid>https://orcid.org/0000-0001-5636-9534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-1836
ispartof G3 : genes - genomes - genetics, 2021-09, Vol.11 (9)
issn 2160-1836
2160-1836
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3426fa2c1e11455e89aaa52e529fbfca
source OUP_牛津大学出版社OA刊; PubMed
subjects Biochemistry, Molecular Biology
Genomics
Investigation
Life Sciences
title Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20multivariate,%20penalized%20regression%20methods%20for%20genomic%20prediction%20and%20QTL%20detection%20of%20drought-related%20traits%20in%20grapevine&rft.jtitle=G3%20:%20genes%20-%20genomes%20-%20genetics&rft.au=Brault,%20Charlotte&rft.date=2021-09-01&rft.volume=11&rft.issue=9&rft.issn=2160-1836&rft.eissn=2160-1836&rft_id=info:doi/10.1093/g3journal/jkab248&rft_dat=%3Cproquest_doaj_%3E2575065242%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c580t-45af9088effa3aace557f508c4dab2734e962b601ac687862ce9a3b01be291e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575065242&rft_id=info:pmid/34544146&rft_oup_id=10.1093/g3journal/jkab248&rfr_iscdi=true