Loading…

Strong-Field Physics with Mid-IR Fields

Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measur...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2015-06, Vol.5 (2), p.021034, Article 021034
Main Authors: Wolter, Benjamin, Pullen, Michael G., Baudisch, Matthias, Sclafani, Michele, Hemmer, Michaël, Senftleben, Arne, Schröter, Claus Dieter, Ullrich, Joachim, Moshammer, Robert, Biegert, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53
cites cdi_FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53
container_end_page
container_issue 2
container_start_page 021034
container_title Physical review. X
container_volume 5
creator Wolter, Benjamin
Pullen, Michael G.
Baudisch, Matthias
Sclafani, Michele
Hemmer, Michaël
Senftleben, Arne
Schröter, Claus Dieter
Ullrich, Joachim
Moshammer, Robert
Biegert, Jens
description Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1) intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2) detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV) and high (hundreds of eV) energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.
doi_str_mv 10.1103/PhysRevX.5.021034
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_34334a7f1deb449c98e0cc4badab0766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_34334a7f1deb449c98e0cc4badab0766</doaj_id><sourcerecordid>2550551755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGp_gLcFD562TjbJZnOUYm2holQFbyGfbUrt1mSr9N-77ao4c5jhneGZ4UXoEsMQYyA3T8t9mrvPtyEbQtEK9AT1ClxCTghUp__6czRIaQVtlIAp5z10_dzEerPIx8GtbXYABZOyr9Ass4dg8-k8O07SBTrzap3c4Kf20ev47mU0yWeP99PR7Sw3lECTOyaE19hrQQrtuBKGgNCtSLxzlQFGfGW9qDjmDrhqUxRVURBstLZaM9JH045ra7WS2xjeVdzLWgV5FOq4kCo2waydJJQQqrjH1mlKhRGVA2OoVlZp4GXZsq461jbWHzuXGrmqd3HTvi8LxoAxzNnhIu62TKxTis7_XcUgD_bKX3slk5295BvnkWzg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550551755</pqid></control><display><type>article</type><title>Strong-Field Physics with Mid-IR Fields</title><source>Publicly Available Content (ProQuest)</source><creator>Wolter, Benjamin ; Pullen, Michael G. ; Baudisch, Matthias ; Sclafani, Michele ; Hemmer, Michaël ; Senftleben, Arne ; Schröter, Claus Dieter ; Ullrich, Joachim ; Moshammer, Robert ; Biegert, Jens</creator><creatorcontrib>Wolter, Benjamin ; Pullen, Michael G. ; Baudisch, Matthias ; Sclafani, Michele ; Hemmer, Michaël ; Senftleben, Arne ; Schröter, Claus Dieter ; Ullrich, Joachim ; Moshammer, Robert ; Biegert, Jens</creatorcontrib><description>Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1) intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2) detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV) and high (hundreds of eV) energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.5.021034</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Atomic structure ; Chemical reactions ; Elastic scattering ; Electric fields ; Electron diffraction ; Energy ; Energy distribution ; Femtosecond pulsed lasers ; Field ionization ; High energy electrons ; Lasers ; Light sources ; Methodology ; Microprocessors ; Molecular dynamics ; Molecular structure ; Momentum ; Photoionization ; Physics ; Versatility ; Wavelengths ; Xenon</subject><ispartof>Physical review. X, 2015-06, Vol.5 (2), p.021034, Article 021034</ispartof><rights>2015. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53</citedby><cites>FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550551755?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Wolter, Benjamin</creatorcontrib><creatorcontrib>Pullen, Michael G.</creatorcontrib><creatorcontrib>Baudisch, Matthias</creatorcontrib><creatorcontrib>Sclafani, Michele</creatorcontrib><creatorcontrib>Hemmer, Michaël</creatorcontrib><creatorcontrib>Senftleben, Arne</creatorcontrib><creatorcontrib>Schröter, Claus Dieter</creatorcontrib><creatorcontrib>Ullrich, Joachim</creatorcontrib><creatorcontrib>Moshammer, Robert</creatorcontrib><creatorcontrib>Biegert, Jens</creatorcontrib><title>Strong-Field Physics with Mid-IR Fields</title><title>Physical review. X</title><description>Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1) intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2) detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV) and high (hundreds of eV) energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.</description><subject>Atomic structure</subject><subject>Chemical reactions</subject><subject>Elastic scattering</subject><subject>Electric fields</subject><subject>Electron diffraction</subject><subject>Energy</subject><subject>Energy distribution</subject><subject>Femtosecond pulsed lasers</subject><subject>Field ionization</subject><subject>High energy electrons</subject><subject>Lasers</subject><subject>Light sources</subject><subject>Methodology</subject><subject>Microprocessors</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Momentum</subject><subject>Photoionization</subject><subject>Physics</subject><subject>Versatility</subject><subject>Wavelengths</subject><subject>Xenon</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWGp_gLcFD562TjbJZnOUYm2holQFbyGfbUrt1mSr9N-77ao4c5jhneGZ4UXoEsMQYyA3T8t9mrvPtyEbQtEK9AT1ClxCTghUp__6czRIaQVtlIAp5z10_dzEerPIx8GtbXYABZOyr9Ass4dg8-k8O07SBTrzap3c4Kf20ev47mU0yWeP99PR7Sw3lECTOyaE19hrQQrtuBKGgNCtSLxzlQFGfGW9qDjmDrhqUxRVURBstLZaM9JH045ra7WS2xjeVdzLWgV5FOq4kCo2waydJJQQqrjH1mlKhRGVA2OoVlZp4GXZsq461jbWHzuXGrmqd3HTvi8LxoAxzNnhIu62TKxTis7_XcUgD_bKX3slk5295BvnkWzg</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Wolter, Benjamin</creator><creator>Pullen, Michael G.</creator><creator>Baudisch, Matthias</creator><creator>Sclafani, Michele</creator><creator>Hemmer, Michaël</creator><creator>Senftleben, Arne</creator><creator>Schröter, Claus Dieter</creator><creator>Ullrich, Joachim</creator><creator>Moshammer, Robert</creator><creator>Biegert, Jens</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20150601</creationdate><title>Strong-Field Physics with Mid-IR Fields</title><author>Wolter, Benjamin ; Pullen, Michael G. ; Baudisch, Matthias ; Sclafani, Michele ; Hemmer, Michaël ; Senftleben, Arne ; Schröter, Claus Dieter ; Ullrich, Joachim ; Moshammer, Robert ; Biegert, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic structure</topic><topic>Chemical reactions</topic><topic>Elastic scattering</topic><topic>Electric fields</topic><topic>Electron diffraction</topic><topic>Energy</topic><topic>Energy distribution</topic><topic>Femtosecond pulsed lasers</topic><topic>Field ionization</topic><topic>High energy electrons</topic><topic>Lasers</topic><topic>Light sources</topic><topic>Methodology</topic><topic>Microprocessors</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Momentum</topic><topic>Photoionization</topic><topic>Physics</topic><topic>Versatility</topic><topic>Wavelengths</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolter, Benjamin</creatorcontrib><creatorcontrib>Pullen, Michael G.</creatorcontrib><creatorcontrib>Baudisch, Matthias</creatorcontrib><creatorcontrib>Sclafani, Michele</creatorcontrib><creatorcontrib>Hemmer, Michaël</creatorcontrib><creatorcontrib>Senftleben, Arne</creatorcontrib><creatorcontrib>Schröter, Claus Dieter</creatorcontrib><creatorcontrib>Ullrich, Joachim</creatorcontrib><creatorcontrib>Moshammer, Robert</creatorcontrib><creatorcontrib>Biegert, Jens</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolter, Benjamin</au><au>Pullen, Michael G.</au><au>Baudisch, Matthias</au><au>Sclafani, Michele</au><au>Hemmer, Michaël</au><au>Senftleben, Arne</au><au>Schröter, Claus Dieter</au><au>Ullrich, Joachim</au><au>Moshammer, Robert</au><au>Biegert, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong-Field Physics with Mid-IR Fields</atitle><jtitle>Physical review. X</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>5</volume><issue>2</issue><spage>021034</spage><pages>021034-</pages><artnum>021034</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1) intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2) detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV) and high (hundreds of eV) energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.5.021034</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-3308
ispartof Physical review. X, 2015-06, Vol.5 (2), p.021034, Article 021034
issn 2160-3308
2160-3308
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_34334a7f1deb449c98e0cc4badab0766
source Publicly Available Content (ProQuest)
subjects Atomic structure
Chemical reactions
Elastic scattering
Electric fields
Electron diffraction
Energy
Energy distribution
Femtosecond pulsed lasers
Field ionization
High energy electrons
Lasers
Light sources
Methodology
Microprocessors
Molecular dynamics
Molecular structure
Momentum
Photoionization
Physics
Versatility
Wavelengths
Xenon
title Strong-Field Physics with Mid-IR Fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong-Field%20Physics%20with%20Mid-IR%20Fields&rft.jtitle=Physical%20review.%20X&rft.au=Wolter,%20Benjamin&rft.date=2015-06-01&rft.volume=5&rft.issue=2&rft.spage=021034&rft.pages=021034-&rft.artnum=021034&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.5.021034&rft_dat=%3Cproquest_doaj_%3E2550551755%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550551755&rft_id=info:pmid/&rfr_iscdi=true