Loading…
Strong-Field Physics with Mid-IR Fields
Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measur...
Saved in:
Published in: | Physical review. X 2015-06, Vol.5 (2), p.021034, Article 021034 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53 |
container_end_page | |
container_issue | 2 |
container_start_page | 021034 |
container_title | Physical review. X |
container_volume | 5 |
creator | Wolter, Benjamin Pullen, Michael G. Baudisch, Matthias Sclafani, Michele Hemmer, Michaël Senftleben, Arne Schröter, Claus Dieter Ullrich, Joachim Moshammer, Robert Biegert, Jens |
description | Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1) intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2) detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV) and high (hundreds of eV) energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses. |
doi_str_mv | 10.1103/PhysRevX.5.021034 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_34334a7f1deb449c98e0cc4badab0766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_34334a7f1deb449c98e0cc4badab0766</doaj_id><sourcerecordid>2550551755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGp_gLcFD562TjbJZnOUYm2holQFbyGfbUrt1mSr9N-77ao4c5jhneGZ4UXoEsMQYyA3T8t9mrvPtyEbQtEK9AT1ClxCTghUp__6czRIaQVtlIAp5z10_dzEerPIx8GtbXYABZOyr9Ass4dg8-k8O07SBTrzap3c4Kf20ev47mU0yWeP99PR7Sw3lECTOyaE19hrQQrtuBKGgNCtSLxzlQFGfGW9qDjmDrhqUxRVURBstLZaM9JH045ra7WS2xjeVdzLWgV5FOq4kCo2waydJJQQqrjH1mlKhRGVA2OoVlZp4GXZsq461jbWHzuXGrmqd3HTvi8LxoAxzNnhIu62TKxTis7_XcUgD_bKX3slk5295BvnkWzg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550551755</pqid></control><display><type>article</type><title>Strong-Field Physics with Mid-IR Fields</title><source>Publicly Available Content (ProQuest)</source><creator>Wolter, Benjamin ; Pullen, Michael G. ; Baudisch, Matthias ; Sclafani, Michele ; Hemmer, Michaël ; Senftleben, Arne ; Schröter, Claus Dieter ; Ullrich, Joachim ; Moshammer, Robert ; Biegert, Jens</creator><creatorcontrib>Wolter, Benjamin ; Pullen, Michael G. ; Baudisch, Matthias ; Sclafani, Michele ; Hemmer, Michaël ; Senftleben, Arne ; Schröter, Claus Dieter ; Ullrich, Joachim ; Moshammer, Robert ; Biegert, Jens</creatorcontrib><description>Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1) intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2) detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV) and high (hundreds of eV) energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.5.021034</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Atomic structure ; Chemical reactions ; Elastic scattering ; Electric fields ; Electron diffraction ; Energy ; Energy distribution ; Femtosecond pulsed lasers ; Field ionization ; High energy electrons ; Lasers ; Light sources ; Methodology ; Microprocessors ; Molecular dynamics ; Molecular structure ; Momentum ; Photoionization ; Physics ; Versatility ; Wavelengths ; Xenon</subject><ispartof>Physical review. X, 2015-06, Vol.5 (2), p.021034, Article 021034</ispartof><rights>2015. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53</citedby><cites>FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550551755?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Wolter, Benjamin</creatorcontrib><creatorcontrib>Pullen, Michael G.</creatorcontrib><creatorcontrib>Baudisch, Matthias</creatorcontrib><creatorcontrib>Sclafani, Michele</creatorcontrib><creatorcontrib>Hemmer, Michaël</creatorcontrib><creatorcontrib>Senftleben, Arne</creatorcontrib><creatorcontrib>Schröter, Claus Dieter</creatorcontrib><creatorcontrib>Ullrich, Joachim</creatorcontrib><creatorcontrib>Moshammer, Robert</creatorcontrib><creatorcontrib>Biegert, Jens</creatorcontrib><title>Strong-Field Physics with Mid-IR Fields</title><title>Physical review. X</title><description>Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1) intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2) detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV) and high (hundreds of eV) energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.</description><subject>Atomic structure</subject><subject>Chemical reactions</subject><subject>Elastic scattering</subject><subject>Electric fields</subject><subject>Electron diffraction</subject><subject>Energy</subject><subject>Energy distribution</subject><subject>Femtosecond pulsed lasers</subject><subject>Field ionization</subject><subject>High energy electrons</subject><subject>Lasers</subject><subject>Light sources</subject><subject>Methodology</subject><subject>Microprocessors</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Momentum</subject><subject>Photoionization</subject><subject>Physics</subject><subject>Versatility</subject><subject>Wavelengths</subject><subject>Xenon</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWGp_gLcFD562TjbJZnOUYm2holQFbyGfbUrt1mSr9N-77ao4c5jhneGZ4UXoEsMQYyA3T8t9mrvPtyEbQtEK9AT1ClxCTghUp__6czRIaQVtlIAp5z10_dzEerPIx8GtbXYABZOyr9Ass4dg8-k8O07SBTrzap3c4Kf20ev47mU0yWeP99PR7Sw3lECTOyaE19hrQQrtuBKGgNCtSLxzlQFGfGW9qDjmDrhqUxRVURBstLZaM9JH045ra7WS2xjeVdzLWgV5FOq4kCo2waydJJQQqrjH1mlKhRGVA2OoVlZp4GXZsq461jbWHzuXGrmqd3HTvi8LxoAxzNnhIu62TKxTis7_XcUgD_bKX3slk5295BvnkWzg</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Wolter, Benjamin</creator><creator>Pullen, Michael G.</creator><creator>Baudisch, Matthias</creator><creator>Sclafani, Michele</creator><creator>Hemmer, Michaël</creator><creator>Senftleben, Arne</creator><creator>Schröter, Claus Dieter</creator><creator>Ullrich, Joachim</creator><creator>Moshammer, Robert</creator><creator>Biegert, Jens</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20150601</creationdate><title>Strong-Field Physics with Mid-IR Fields</title><author>Wolter, Benjamin ; Pullen, Michael G. ; Baudisch, Matthias ; Sclafani, Michele ; Hemmer, Michaël ; Senftleben, Arne ; Schröter, Claus Dieter ; Ullrich, Joachim ; Moshammer, Robert ; Biegert, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic structure</topic><topic>Chemical reactions</topic><topic>Elastic scattering</topic><topic>Electric fields</topic><topic>Electron diffraction</topic><topic>Energy</topic><topic>Energy distribution</topic><topic>Femtosecond pulsed lasers</topic><topic>Field ionization</topic><topic>High energy electrons</topic><topic>Lasers</topic><topic>Light sources</topic><topic>Methodology</topic><topic>Microprocessors</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Momentum</topic><topic>Photoionization</topic><topic>Physics</topic><topic>Versatility</topic><topic>Wavelengths</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolter, Benjamin</creatorcontrib><creatorcontrib>Pullen, Michael G.</creatorcontrib><creatorcontrib>Baudisch, Matthias</creatorcontrib><creatorcontrib>Sclafani, Michele</creatorcontrib><creatorcontrib>Hemmer, Michaël</creatorcontrib><creatorcontrib>Senftleben, Arne</creatorcontrib><creatorcontrib>Schröter, Claus Dieter</creatorcontrib><creatorcontrib>Ullrich, Joachim</creatorcontrib><creatorcontrib>Moshammer, Robert</creatorcontrib><creatorcontrib>Biegert, Jens</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolter, Benjamin</au><au>Pullen, Michael G.</au><au>Baudisch, Matthias</au><au>Sclafani, Michele</au><au>Hemmer, Michaël</au><au>Senftleben, Arne</au><au>Schröter, Claus Dieter</au><au>Ullrich, Joachim</au><au>Moshammer, Robert</au><au>Biegert, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong-Field Physics with Mid-IR Fields</atitle><jtitle>Physical review. X</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>5</volume><issue>2</issue><spage>021034</spage><pages>021034-</pages><artnum>021034</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1) intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2) detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV) and high (hundreds of eV) energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.5.021034</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-3308 |
ispartof | Physical review. X, 2015-06, Vol.5 (2), p.021034, Article 021034 |
issn | 2160-3308 2160-3308 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_34334a7f1deb449c98e0cc4badab0766 |
source | Publicly Available Content (ProQuest) |
subjects | Atomic structure Chemical reactions Elastic scattering Electric fields Electron diffraction Energy Energy distribution Femtosecond pulsed lasers Field ionization High energy electrons Lasers Light sources Methodology Microprocessors Molecular dynamics Molecular structure Momentum Photoionization Physics Versatility Wavelengths Xenon |
title | Strong-Field Physics with Mid-IR Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong-Field%20Physics%20with%20Mid-IR%20Fields&rft.jtitle=Physical%20review.%20X&rft.au=Wolter,%20Benjamin&rft.date=2015-06-01&rft.volume=5&rft.issue=2&rft.spage=021034&rft.pages=021034-&rft.artnum=021034&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.5.021034&rft_dat=%3Cproquest_doaj_%3E2550551755%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-e599fb1fb932be7a9c309b5993fee8c053f8df98717e07a7a79282231cbbdbb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550551755&rft_id=info:pmid/&rfr_iscdi=true |