Loading…

Investigation of a Novel Multicomponent Mycotoxin Detoxifying Agent in Amelioration of Mycotoxicosis Induced by Aflatoxin-B1 and Ochratoxin A in Broiler Chicks

The present study was designed to determine the efficacy of a novel multicomponent mycotoxin detoxifying agent (MMDA) containing modified zeolite (Clinoptilolite), Bacillus subtilis, B. licheniformis, Saccharomyces cerevisiae cell walls and silymarin against the deleterious effects of Aflatoxin B1 (...

Full description

Saved in:
Bibliographic Details
Published in:Toxins 2021-05, Vol.13 (6), p.367
Main Authors: Tsiouris, Vasilios, Tassis, Panagiotis, Raj, Jog, Mantzios, Tilemachos, Kiskinis, Konstantinos, Vasiljević, Marko, Delić, Nikola, Petridou, Evanthia, Brellou, Georgia D., Polizopoulou, Zoe, Mittas, Nikolaos, Georgopoulou, Ioanna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study was designed to determine the efficacy of a novel multicomponent mycotoxin detoxifying agent (MMDA) containing modified zeolite (Clinoptilolite), Bacillus subtilis, B. licheniformis, Saccharomyces cerevisiae cell walls and silymarin against the deleterious effects of Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) in broiler chicks. A total of 160 one-day-old Ross 308® broiler chicks were randomly allocated in four treatment groups, with four replicates, according to the following experimental design for 42 days. Group A received a basal diet; Group B received a basal diet contaminated with AFB1 and OTA at 0.1 mg/kg and 1 mg/kg, respectively; Group C received a basal diet contaminated with AFB1 and OTA and MMDA at 1 g/kg feed, and Group D received a basal diet contaminated with AFB1 and OTA and MMDA at 3 g/kg feed. Results showed that ingested mycotoxins led to significant (p ≤ 0.05) reduction in body weight and feed conversion from 25 days of age, induced histopathological changes, increased the pH of the intestinal content, and altered the biochemical profile of birds with significantly (p ≤ 0.05) increased aspartate aminotransferase (AST) values (p ≤ 0.05). On the other hand, the supplementation of MMDA significantly (p ≤ 0.05) improved the feed conversion ratio (FCR) during the second part of the study, diminished biochemical alterations, reduced pH in jejunal and ileal content, and E. coli counts in the caeca of birds (p ≤ 0.05). It may be concluded that the dietary supplementation of the MMDA partially ameliorated the adverse effects of AFB1 and OTA in broilers and could be an efficient tool in a mycotoxin control program.
ISSN:2072-6651
2072-6651
DOI:10.3390/toxins13060367