Loading…
Generation and validation of APOE knockout human iPSC-derived cerebral organoids
Apolipoprotein E (apoE) is a major lipid carrier in the brain and closely associated with the pathogenesis of Alzheimer's disease (AD). Here, we describe a protocol for efficient knockout of APOE in human induced pluripotent stem cells (iPSCs) using the CRISPR-Cas9 system. We obtain homozygous...
Saved in:
Published in: | STAR protocols 2021-06, Vol.2 (2), p.100571-100571, Article 100571 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c521t-cd6851ffba3e7598361f978907b47585c7108cee680e180e0087babac0b069dd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c521t-cd6851ffba3e7598361f978907b47585c7108cee680e180e0087babac0b069dd3 |
container_end_page | 100571 |
container_issue | 2 |
container_start_page | 100571 |
container_title | STAR protocols |
container_volume | 2 |
creator | Martens, Yuka A. Xu, Siming Tait, Richard Li, Gary Zhao, Xinping C. Lu, Wenyan Liu, Chia-Chen Kanekiyo, Takahisa Bu, Guojun Zhao, Jing |
description | Apolipoprotein E (apoE) is a major lipid carrier in the brain and closely associated with the pathogenesis of Alzheimer's disease (AD). Here, we describe a protocol for efficient knockout of APOE in human induced pluripotent stem cells (iPSCs) using the CRISPR-Cas9 system. We obtain homozygous APOE knockout (APOE-/-) iPSCs and further validate the deficiency of apoE in iPSC-derived cerebral organoids. APOE-/- cerebral organoids can serve as a useful tool to study apoE functions and apoE-related pathogenic mechanisms in AD.
For complete details on the use and execution of this protocol, please refer to Zhao et al. (2020).
[Display omitted]
•Detailed protocol to generate APOE knockout human iPSC lines via CRISPR-Cas9 technology•Detailed protocol to generate cerebral organoids from parental and isogenic iPSC lines•Steps for quality control and assessment of apoE deletion in cerebral organoids•Provides a valuable tool for apoE function study using iPSC-derived cerebral organoids
Apolipoprotein E (apoE) is a major lipid carrier in the brain and closely associated with the pathogenesis of Alzheimer's disease (AD). Here, we describe a protocol for efficient knockout of APOE in human induced pluripotent stem cells (iPSCs) using the CRISPR-Cas9 system. We obtain homozygous APOE knockout (APOE-/-) iPSCs and further validate the deficiency of apoE in iPSC-derived cerebral organoids. APOE-/- cerebral organoids can serve as a useful tool to study apoE functions and apoE-related pathogenic mechanisms in AD. |
doi_str_mv | 10.1016/j.xpro.2021.100571 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_34498f0ff6534c0aaa4ed37d6d537429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666166721002781</els_id><doaj_id>oai_doaj_org_article_34498f0ff6534c0aaa4ed37d6d537429</doaj_id><sourcerecordid>2543707201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-cd6851ffba3e7598361f978907b47585c7108cee680e180e0087babac0b069dd3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhqOqqCDgD_RQ5dhLlrETf0SqKqEVBSQkVoKeLceegJesvbWTFf339TYUwaUHy-PxO4_H8xbFZwILAoSfrRfP2xgWFCjJCWCCfCiOKOe8IpyLj2_iw-I0pTUAUEZoQ-Sn4rBuSI5bflSsLtFj1KMLvtTeljs9ODsfQ1-er24vyicfzFOYxvJx2mhfutXdsrIY3Q5taTBiF_VQhvigfXA2nRQHvR4Snr7sx8XPHxf3y6vq5vbyenl-UxlGyVgZyyUjfd_pGgVrZc1J3wrZgugawSQzgoA0iFwCkrwApOh0pw10wFtr6-PieubaoNdqG91Gx98qaKf-JnI_SsfRmQFV3TSt7KHvOasbA1rrBm0tLLesFg1tM-v7zNpO3QatQT_mP72Dvr_x7lE9hJ2SpAUGMgO-vgBi-DVhGtXGJYPDoD2GKSnKmlqAoECylM5SE0NKEfvXZwiovbNqrfbOqr2zanY2F3152-BryT8fs-DbLMA88p3DqJJx6A1aF9GMeSbuf_w_6Wi0fw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543707201</pqid></control><display><type>article</type><title>Generation and validation of APOE knockout human iPSC-derived cerebral organoids</title><source>Open Access: PubMed Central</source><source>ScienceDirect (Elsevier)</source><creator>Martens, Yuka A. ; Xu, Siming ; Tait, Richard ; Li, Gary ; Zhao, Xinping C. ; Lu, Wenyan ; Liu, Chia-Chen ; Kanekiyo, Takahisa ; Bu, Guojun ; Zhao, Jing</creator><creatorcontrib>Martens, Yuka A. ; Xu, Siming ; Tait, Richard ; Li, Gary ; Zhao, Xinping C. ; Lu, Wenyan ; Liu, Chia-Chen ; Kanekiyo, Takahisa ; Bu, Guojun ; Zhao, Jing</creatorcontrib><description>Apolipoprotein E (apoE) is a major lipid carrier in the brain and closely associated with the pathogenesis of Alzheimer's disease (AD). Here, we describe a protocol for efficient knockout of APOE in human induced pluripotent stem cells (iPSCs) using the CRISPR-Cas9 system. We obtain homozygous APOE knockout (APOE-/-) iPSCs and further validate the deficiency of apoE in iPSC-derived cerebral organoids. APOE-/- cerebral organoids can serve as a useful tool to study apoE functions and apoE-related pathogenic mechanisms in AD.
For complete details on the use and execution of this protocol, please refer to Zhao et al. (2020).
[Display omitted]
•Detailed protocol to generate APOE knockout human iPSC lines via CRISPR-Cas9 technology•Detailed protocol to generate cerebral organoids from parental and isogenic iPSC lines•Steps for quality control and assessment of apoE deletion in cerebral organoids•Provides a valuable tool for apoE function study using iPSC-derived cerebral organoids
Apolipoprotein E (apoE) is a major lipid carrier in the brain and closely associated with the pathogenesis of Alzheimer's disease (AD). Here, we describe a protocol for efficient knockout of APOE in human induced pluripotent stem cells (iPSCs) using the CRISPR-Cas9 system. We obtain homozygous APOE knockout (APOE-/-) iPSCs and further validate the deficiency of apoE in iPSC-derived cerebral organoids. APOE-/- cerebral organoids can serve as a useful tool to study apoE functions and apoE-related pathogenic mechanisms in AD.</description><identifier>ISSN: 2666-1667</identifier><identifier>EISSN: 2666-1667</identifier><identifier>DOI: 10.1016/j.xpro.2021.100571</identifier><identifier>PMID: 34151296</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Brain - metabolism ; CRISPR ; CRISPR-Cas Systems ; Gene Knockdown Techniques ; Humans ; Induced Pluripotent Stem Cells - metabolism ; Neuroscience ; Organoids ; Organoids - metabolism ; Protocol ; Stem Cells</subject><ispartof>STAR protocols, 2021-06, Vol.2 (2), p.100571-100571, Article 100571</ispartof><rights>2021 The Author(s)</rights><rights>2021 The Author(s).</rights><rights>2021 The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-cd6851ffba3e7598361f978907b47585c7108cee680e180e0087babac0b069dd3</citedby><cites>FETCH-LOGICAL-c521t-cd6851ffba3e7598361f978907b47585c7108cee680e180e0087babac0b069dd3</cites><orcidid>0000-0001-6751-9374 ; 0000-0002-4520-6307 ; 0000-0002-9531-4795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190508/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666166721002781$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34151296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martens, Yuka A.</creatorcontrib><creatorcontrib>Xu, Siming</creatorcontrib><creatorcontrib>Tait, Richard</creatorcontrib><creatorcontrib>Li, Gary</creatorcontrib><creatorcontrib>Zhao, Xinping C.</creatorcontrib><creatorcontrib>Lu, Wenyan</creatorcontrib><creatorcontrib>Liu, Chia-Chen</creatorcontrib><creatorcontrib>Kanekiyo, Takahisa</creatorcontrib><creatorcontrib>Bu, Guojun</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><title>Generation and validation of APOE knockout human iPSC-derived cerebral organoids</title><title>STAR protocols</title><addtitle>STAR Protoc</addtitle><description>Apolipoprotein E (apoE) is a major lipid carrier in the brain and closely associated with the pathogenesis of Alzheimer's disease (AD). Here, we describe a protocol for efficient knockout of APOE in human induced pluripotent stem cells (iPSCs) using the CRISPR-Cas9 system. We obtain homozygous APOE knockout (APOE-/-) iPSCs and further validate the deficiency of apoE in iPSC-derived cerebral organoids. APOE-/- cerebral organoids can serve as a useful tool to study apoE functions and apoE-related pathogenic mechanisms in AD.
For complete details on the use and execution of this protocol, please refer to Zhao et al. (2020).
[Display omitted]
•Detailed protocol to generate APOE knockout human iPSC lines via CRISPR-Cas9 technology•Detailed protocol to generate cerebral organoids from parental and isogenic iPSC lines•Steps for quality control and assessment of apoE deletion in cerebral organoids•Provides a valuable tool for apoE function study using iPSC-derived cerebral organoids
Apolipoprotein E (apoE) is a major lipid carrier in the brain and closely associated with the pathogenesis of Alzheimer's disease (AD). Here, we describe a protocol for efficient knockout of APOE in human induced pluripotent stem cells (iPSCs) using the CRISPR-Cas9 system. We obtain homozygous APOE knockout (APOE-/-) iPSCs and further validate the deficiency of apoE in iPSC-derived cerebral organoids. APOE-/- cerebral organoids can serve as a useful tool to study apoE functions and apoE-related pathogenic mechanisms in AD.</description><subject>Brain - metabolism</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Neuroscience</subject><subject>Organoids</subject><subject>Organoids - metabolism</subject><subject>Protocol</subject><subject>Stem Cells</subject><issn>2666-1667</issn><issn>2666-1667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1P3DAQhqOqqCDgD_RQ5dhLlrETf0SqKqEVBSQkVoKeLceegJesvbWTFf339TYUwaUHy-PxO4_H8xbFZwILAoSfrRfP2xgWFCjJCWCCfCiOKOe8IpyLj2_iw-I0pTUAUEZoQ-Sn4rBuSI5bflSsLtFj1KMLvtTeljs9ODsfQ1-er24vyicfzFOYxvJx2mhfutXdsrIY3Q5taTBiF_VQhvigfXA2nRQHvR4Snr7sx8XPHxf3y6vq5vbyenl-UxlGyVgZyyUjfd_pGgVrZc1J3wrZgugawSQzgoA0iFwCkrwApOh0pw10wFtr6-PieubaoNdqG91Gx98qaKf-JnI_SsfRmQFV3TSt7KHvOasbA1rrBm0tLLesFg1tM-v7zNpO3QatQT_mP72Dvr_x7lE9hJ2SpAUGMgO-vgBi-DVhGtXGJYPDoD2GKSnKmlqAoECylM5SE0NKEfvXZwiovbNqrfbOqr2zanY2F3152-BryT8fs-DbLMA88p3DqJJx6A1aF9GMeSbuf_w_6Wi0fw</recordid><startdate>20210618</startdate><enddate>20210618</enddate><creator>Martens, Yuka A.</creator><creator>Xu, Siming</creator><creator>Tait, Richard</creator><creator>Li, Gary</creator><creator>Zhao, Xinping C.</creator><creator>Lu, Wenyan</creator><creator>Liu, Chia-Chen</creator><creator>Kanekiyo, Takahisa</creator><creator>Bu, Guojun</creator><creator>Zhao, Jing</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6751-9374</orcidid><orcidid>https://orcid.org/0000-0002-4520-6307</orcidid><orcidid>https://orcid.org/0000-0002-9531-4795</orcidid></search><sort><creationdate>20210618</creationdate><title>Generation and validation of APOE knockout human iPSC-derived cerebral organoids</title><author>Martens, Yuka A. ; Xu, Siming ; Tait, Richard ; Li, Gary ; Zhao, Xinping C. ; Lu, Wenyan ; Liu, Chia-Chen ; Kanekiyo, Takahisa ; Bu, Guojun ; Zhao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-cd6851ffba3e7598361f978907b47585c7108cee680e180e0087babac0b069dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain - metabolism</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Neuroscience</topic><topic>Organoids</topic><topic>Organoids - metabolism</topic><topic>Protocol</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martens, Yuka A.</creatorcontrib><creatorcontrib>Xu, Siming</creatorcontrib><creatorcontrib>Tait, Richard</creatorcontrib><creatorcontrib>Li, Gary</creatorcontrib><creatorcontrib>Zhao, Xinping C.</creatorcontrib><creatorcontrib>Lu, Wenyan</creatorcontrib><creatorcontrib>Liu, Chia-Chen</creatorcontrib><creatorcontrib>Kanekiyo, Takahisa</creatorcontrib><creatorcontrib>Bu, Guojun</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>STAR protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martens, Yuka A.</au><au>Xu, Siming</au><au>Tait, Richard</au><au>Li, Gary</au><au>Zhao, Xinping C.</au><au>Lu, Wenyan</au><au>Liu, Chia-Chen</au><au>Kanekiyo, Takahisa</au><au>Bu, Guojun</au><au>Zhao, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation and validation of APOE knockout human iPSC-derived cerebral organoids</atitle><jtitle>STAR protocols</jtitle><addtitle>STAR Protoc</addtitle><date>2021-06-18</date><risdate>2021</risdate><volume>2</volume><issue>2</issue><spage>100571</spage><epage>100571</epage><pages>100571-100571</pages><artnum>100571</artnum><issn>2666-1667</issn><eissn>2666-1667</eissn><abstract>Apolipoprotein E (apoE) is a major lipid carrier in the brain and closely associated with the pathogenesis of Alzheimer's disease (AD). Here, we describe a protocol for efficient knockout of APOE in human induced pluripotent stem cells (iPSCs) using the CRISPR-Cas9 system. We obtain homozygous APOE knockout (APOE-/-) iPSCs and further validate the deficiency of apoE in iPSC-derived cerebral organoids. APOE-/- cerebral organoids can serve as a useful tool to study apoE functions and apoE-related pathogenic mechanisms in AD.
For complete details on the use and execution of this protocol, please refer to Zhao et al. (2020).
[Display omitted]
•Detailed protocol to generate APOE knockout human iPSC lines via CRISPR-Cas9 technology•Detailed protocol to generate cerebral organoids from parental and isogenic iPSC lines•Steps for quality control and assessment of apoE deletion in cerebral organoids•Provides a valuable tool for apoE function study using iPSC-derived cerebral organoids
Apolipoprotein E (apoE) is a major lipid carrier in the brain and closely associated with the pathogenesis of Alzheimer's disease (AD). Here, we describe a protocol for efficient knockout of APOE in human induced pluripotent stem cells (iPSCs) using the CRISPR-Cas9 system. We obtain homozygous APOE knockout (APOE-/-) iPSCs and further validate the deficiency of apoE in iPSC-derived cerebral organoids. APOE-/- cerebral organoids can serve as a useful tool to study apoE functions and apoE-related pathogenic mechanisms in AD.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34151296</pmid><doi>10.1016/j.xpro.2021.100571</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6751-9374</orcidid><orcidid>https://orcid.org/0000-0002-4520-6307</orcidid><orcidid>https://orcid.org/0000-0002-9531-4795</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-1667 |
ispartof | STAR protocols, 2021-06, Vol.2 (2), p.100571-100571, Article 100571 |
issn | 2666-1667 2666-1667 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_34498f0ff6534c0aaa4ed37d6d537429 |
source | Open Access: PubMed Central; ScienceDirect (Elsevier) |
subjects | Brain - metabolism CRISPR CRISPR-Cas Systems Gene Knockdown Techniques Humans Induced Pluripotent Stem Cells - metabolism Neuroscience Organoids Organoids - metabolism Protocol Stem Cells |
title | Generation and validation of APOE knockout human iPSC-derived cerebral organoids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20and%20validation%20of%20APOE%20knockout%20human%20iPSC-derived%20cerebral%20organoids&rft.jtitle=STAR%20protocols&rft.au=Martens,%20Yuka%20A.&rft.date=2021-06-18&rft.volume=2&rft.issue=2&rft.spage=100571&rft.epage=100571&rft.pages=100571-100571&rft.artnum=100571&rft.issn=2666-1667&rft.eissn=2666-1667&rft_id=info:doi/10.1016/j.xpro.2021.100571&rft_dat=%3Cproquest_doaj_%3E2543707201%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-cd6851ffba3e7598361f978907b47585c7108cee680e180e0087babac0b069dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2543707201&rft_id=info:pmid/34151296&rfr_iscdi=true |