Loading…

The ERA5-Land soil temperature bias in permafrost regions

ERA5-Land (ERA5L) is a reanalysis product derived by running the land component of ERA5 at increased resolution. This study evaluates ERA5L soil temperature in permafrost regions based on observations and published permafrost products. We find that ERA5L overestimates soil temperature in northern Ca...

Full description

Saved in:
Bibliographic Details
Published in:The cryosphere 2020-08, Vol.14 (8), p.2581-2595
Main Authors: Cao, Bin, Gruber, Stephan, Zheng, Donghai, Li, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a500t-d82b293b6a3c4dc7a7a9e6c91ca6ef7316df0bd3129b90b94701a6dee1b90dd83
cites cdi_FETCH-LOGICAL-a500t-d82b293b6a3c4dc7a7a9e6c91ca6ef7316df0bd3129b90b94701a6dee1b90dd83
container_end_page 2595
container_issue 8
container_start_page 2581
container_title The cryosphere
container_volume 14
creator Cao, Bin
Gruber, Stephan
Zheng, Donghai
Li, Xin
description ERA5-Land (ERA5L) is a reanalysis product derived by running the land component of ERA5 at increased resolution. This study evaluates ERA5L soil temperature in permafrost regions based on observations and published permafrost products. We find that ERA5L overestimates soil temperature in northern Canada and Alaska but underestimates it in mid–low latitudes, leading to an average bias of −0.08 ∘C. The warm bias of ERA5L soil is stronger in winter than in other seasons. As calculated from its soil temperature, ERA5L overestimates active-layer thickness and underestimates near-surface (
doi_str_mv 10.5194/tc-14-2581-2020
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_34523bc1024f49ac9631b168816c3125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632304004</galeid><doaj_id>oai_doaj_org_article_34523bc1024f49ac9631b168816c3125</doaj_id><sourcerecordid>A632304004</sourcerecordid><originalsourceid>FETCH-LOGICAL-a500t-d82b293b6a3c4dc7a7a9e6c91ca6ef7316df0bd3129b90b94701a6dee1b90dd83</originalsourceid><addsrcrecordid>eNptkc1rGzEQxZfSQFOn514XeuphkxlJK6-OJqSJwVDIx1nMSlpXxrtyJRnS_75yHNIYig6SHr95mtGrqq8Ily0qcZVNg6JhbYcNAwYfqnNUSjQgmPj47vyp-pzSBkAyBeK8Uo-_XH1zv2ibFU22TsFv6-zGnYuU99HVvadU-6kuwkhDDCnX0a19mNJFdTbQNrkvr_usevpx83h916x-3i6vF6uGWoDc2I71TPFeEjfCmjnNSTlpFBqSbphzlHaA3nJkqlfQKzEHJGmdw3K1tuOzann0tYE2ehf9SPGPDuT1ixDiWlPM3myd5qJlvDcITAxCkVGSY4-y61Ca8kBbvL4dvXYx_N67lPUm7ONU2tdMcNaxjnf4j1pTMfXTEHIkM_pk9EJyxkEAiEJd_ocqy7rRmzC5wRf9pOD7SUFhsnvOa9qnpJcP96fs1ZE15ctTdMPb4Aj6ELfORqPQh7j1IW7-F83YmC0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432828381</pqid></control><display><type>article</type><title>The ERA5-Land soil temperature bias in permafrost regions</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Cao, Bin ; Gruber, Stephan ; Zheng, Donghai ; Li, Xin</creator><creatorcontrib>Cao, Bin ; Gruber, Stephan ; Zheng, Donghai ; Li, Xin</creatorcontrib><description>ERA5-Land (ERA5L) is a reanalysis product derived by running the land component of ERA5 at increased resolution. This study evaluates ERA5L soil temperature in permafrost regions based on observations and published permafrost products. We find that ERA5L overestimates soil temperature in northern Canada and Alaska but underestimates it in mid–low latitudes, leading to an average bias of −0.08 ∘C. The warm bias of ERA5L soil is stronger in winter than in other seasons. As calculated from its soil temperature, ERA5L overestimates active-layer thickness and underestimates near-surface (&lt;1.89 m) permafrost area. This is thought to be due in part to the shallow soil column and coarse vertical discretization of the land surface model and to warmer simulated soil. The soil temperature bias in permafrost regions correlates well with the bias in air temperature and with maximum snow height. A review of the ERA5L snow parameterization and a simulation example both point to a low bias in ERA5L snow density as a possible cause for the warm bias in soil temperature. The apparent disagreement of station-based and areal evaluation techniques highlights challenges in our ability to test permafrost simulation models. While global reanalyses are important drivers for permafrost simulation, we conclude that ERA5L soil data are not well suited for informing permafrost research and decision making directly. To address this, future soil temperature products in reanalyses will require permafrost-specific alterations to their land surface models.</description><identifier>ISSN: 1994-0424</identifier><identifier>ISSN: 1994-0416</identifier><identifier>EISSN: 1994-0424</identifier><identifier>EISSN: 1994-0416</identifier><identifier>DOI: 10.5194/tc-14-2581-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Air temperature ; Bias ; Computer simulation ; Decision making ; Heat conductivity ; Hydrology ; Ice ; Land surface models ; Parameterization ; Permafrost ; Regions ; Simulation ; Snow ; Snow density ; Soil ; Soil temperature ; Soils ; Temperature ; Temperature requirements ; Thickness ; Time series</subject><ispartof>The cryosphere, 2020-08, Vol.14 (8), p.2581-2595</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a500t-d82b293b6a3c4dc7a7a9e6c91ca6ef7316df0bd3129b90b94701a6dee1b90dd83</citedby><cites>FETCH-LOGICAL-a500t-d82b293b6a3c4dc7a7a9e6c91ca6ef7316df0bd3129b90b94701a6dee1b90dd83</cites><orcidid>0000-0003-2473-2276 ; 0000-0003-1151-3381 ; 0000-0002-1079-1542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2432828381/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2432828381?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Cao, Bin</creatorcontrib><creatorcontrib>Gruber, Stephan</creatorcontrib><creatorcontrib>Zheng, Donghai</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><title>The ERA5-Land soil temperature bias in permafrost regions</title><title>The cryosphere</title><description>ERA5-Land (ERA5L) is a reanalysis product derived by running the land component of ERA5 at increased resolution. This study evaluates ERA5L soil temperature in permafrost regions based on observations and published permafrost products. We find that ERA5L overestimates soil temperature in northern Canada and Alaska but underestimates it in mid–low latitudes, leading to an average bias of −0.08 ∘C. The warm bias of ERA5L soil is stronger in winter than in other seasons. As calculated from its soil temperature, ERA5L overestimates active-layer thickness and underestimates near-surface (&lt;1.89 m) permafrost area. This is thought to be due in part to the shallow soil column and coarse vertical discretization of the land surface model and to warmer simulated soil. The soil temperature bias in permafrost regions correlates well with the bias in air temperature and with maximum snow height. A review of the ERA5L snow parameterization and a simulation example both point to a low bias in ERA5L snow density as a possible cause for the warm bias in soil temperature. The apparent disagreement of station-based and areal evaluation techniques highlights challenges in our ability to test permafrost simulation models. While global reanalyses are important drivers for permafrost simulation, we conclude that ERA5L soil data are not well suited for informing permafrost research and decision making directly. To address this, future soil temperature products in reanalyses will require permafrost-specific alterations to their land surface models.</description><subject>Air temperature</subject><subject>Bias</subject><subject>Computer simulation</subject><subject>Decision making</subject><subject>Heat conductivity</subject><subject>Hydrology</subject><subject>Ice</subject><subject>Land surface models</subject><subject>Parameterization</subject><subject>Permafrost</subject><subject>Regions</subject><subject>Simulation</subject><subject>Snow</subject><subject>Snow density</subject><subject>Soil</subject><subject>Soil temperature</subject><subject>Soils</subject><subject>Temperature</subject><subject>Temperature requirements</subject><subject>Thickness</subject><subject>Time series</subject><issn>1994-0424</issn><issn>1994-0416</issn><issn>1994-0424</issn><issn>1994-0416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc1rGzEQxZfSQFOn514XeuphkxlJK6-OJqSJwVDIx1nMSlpXxrtyJRnS_75yHNIYig6SHr95mtGrqq8Ily0qcZVNg6JhbYcNAwYfqnNUSjQgmPj47vyp-pzSBkAyBeK8Uo-_XH1zv2ibFU22TsFv6-zGnYuU99HVvadU-6kuwkhDDCnX0a19mNJFdTbQNrkvr_usevpx83h916x-3i6vF6uGWoDc2I71TPFeEjfCmjnNSTlpFBqSbphzlHaA3nJkqlfQKzEHJGmdw3K1tuOzann0tYE2ehf9SPGPDuT1ixDiWlPM3myd5qJlvDcITAxCkVGSY4-y61Ca8kBbvL4dvXYx_N67lPUm7ONU2tdMcNaxjnf4j1pTMfXTEHIkM_pk9EJyxkEAiEJd_ocqy7rRmzC5wRf9pOD7SUFhsnvOa9qnpJcP96fs1ZE15ctTdMPb4Aj6ELfORqPQh7j1IW7-F83YmC0</recordid><startdate>20200812</startdate><enddate>20200812</enddate><creator>Cao, Bin</creator><creator>Gruber, Stephan</creator><creator>Zheng, Donghai</creator><creator>Li, Xin</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2473-2276</orcidid><orcidid>https://orcid.org/0000-0003-1151-3381</orcidid><orcidid>https://orcid.org/0000-0002-1079-1542</orcidid></search><sort><creationdate>20200812</creationdate><title>The ERA5-Land soil temperature bias in permafrost regions</title><author>Cao, Bin ; Gruber, Stephan ; Zheng, Donghai ; Li, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a500t-d82b293b6a3c4dc7a7a9e6c91ca6ef7316df0bd3129b90b94701a6dee1b90dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air temperature</topic><topic>Bias</topic><topic>Computer simulation</topic><topic>Decision making</topic><topic>Heat conductivity</topic><topic>Hydrology</topic><topic>Ice</topic><topic>Land surface models</topic><topic>Parameterization</topic><topic>Permafrost</topic><topic>Regions</topic><topic>Simulation</topic><topic>Snow</topic><topic>Snow density</topic><topic>Soil</topic><topic>Soil temperature</topic><topic>Soils</topic><topic>Temperature</topic><topic>Temperature requirements</topic><topic>Thickness</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Bin</creatorcontrib><creatorcontrib>Gruber, Stephan</creatorcontrib><creatorcontrib>Zheng, Donghai</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The cryosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Bin</au><au>Gruber, Stephan</au><au>Zheng, Donghai</au><au>Li, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ERA5-Land soil temperature bias in permafrost regions</atitle><jtitle>The cryosphere</jtitle><date>2020-08-12</date><risdate>2020</risdate><volume>14</volume><issue>8</issue><spage>2581</spage><epage>2595</epage><pages>2581-2595</pages><issn>1994-0424</issn><issn>1994-0416</issn><eissn>1994-0424</eissn><eissn>1994-0416</eissn><abstract>ERA5-Land (ERA5L) is a reanalysis product derived by running the land component of ERA5 at increased resolution. This study evaluates ERA5L soil temperature in permafrost regions based on observations and published permafrost products. We find that ERA5L overestimates soil temperature in northern Canada and Alaska but underestimates it in mid–low latitudes, leading to an average bias of −0.08 ∘C. The warm bias of ERA5L soil is stronger in winter than in other seasons. As calculated from its soil temperature, ERA5L overestimates active-layer thickness and underestimates near-surface (&lt;1.89 m) permafrost area. This is thought to be due in part to the shallow soil column and coarse vertical discretization of the land surface model and to warmer simulated soil. The soil temperature bias in permafrost regions correlates well with the bias in air temperature and with maximum snow height. A review of the ERA5L snow parameterization and a simulation example both point to a low bias in ERA5L snow density as a possible cause for the warm bias in soil temperature. The apparent disagreement of station-based and areal evaluation techniques highlights challenges in our ability to test permafrost simulation models. While global reanalyses are important drivers for permafrost simulation, we conclude that ERA5L soil data are not well suited for informing permafrost research and decision making directly. To address this, future soil temperature products in reanalyses will require permafrost-specific alterations to their land surface models.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/tc-14-2581-2020</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2473-2276</orcidid><orcidid>https://orcid.org/0000-0003-1151-3381</orcidid><orcidid>https://orcid.org/0000-0002-1079-1542</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1994-0424
ispartof The cryosphere, 2020-08, Vol.14 (8), p.2581-2595
issn 1994-0424
1994-0416
1994-0424
1994-0416
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_34523bc1024f49ac9631b168816c3125
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Air temperature
Bias
Computer simulation
Decision making
Heat conductivity
Hydrology
Ice
Land surface models
Parameterization
Permafrost
Regions
Simulation
Snow
Snow density
Soil
Soil temperature
Soils
Temperature
Temperature requirements
Thickness
Time series
title The ERA5-Land soil temperature bias in permafrost regions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ERA5-Land%20soil%20temperature%20bias%20in%20permafrost%20regions&rft.jtitle=The%20cryosphere&rft.au=Cao,%20Bin&rft.date=2020-08-12&rft.volume=14&rft.issue=8&rft.spage=2581&rft.epage=2595&rft.pages=2581-2595&rft.issn=1994-0424&rft.eissn=1994-0424&rft_id=info:doi/10.5194/tc-14-2581-2020&rft_dat=%3Cgale_doaj_%3EA632304004%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a500t-d82b293b6a3c4dc7a7a9e6c91ca6ef7316df0bd3129b90b94701a6dee1b90dd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2432828381&rft_id=info:pmid/&rft_galeid=A632304004&rfr_iscdi=true