Loading…

Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method

Silver (Ag) nanoparticle-loaded strontium titanate (SrTiO₃) nanoparticles were attempted to be synthesized by a sol-gel-hydrothermal method. We prepared the titanium oxide precursor gels incorporated with Ag⁺ and Sr ions with various molar ratios, and they were successfully converted into the Ag-SrT...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2015-03, Vol.5 (2), p.386-397
Main Authors: Ueno, Shintaro, Nakashima, Kouichi, Sakamoto, Yasunao, Wada, Satoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-9eee32f91920655567da21bd3561faa44fab8e2925db13081eefd77aec9767103
cites cdi_FETCH-LOGICAL-c508t-9eee32f91920655567da21bd3561faa44fab8e2925db13081eefd77aec9767103
container_end_page 397
container_issue 2
container_start_page 386
container_title Nanomaterials (Basel, Switzerland)
container_volume 5
creator Ueno, Shintaro
Nakashima, Kouichi
Sakamoto, Yasunao
Wada, Satoshi
description Silver (Ag) nanoparticle-loaded strontium titanate (SrTiO₃) nanoparticles were attempted to be synthesized by a sol-gel-hydrothermal method. We prepared the titanium oxide precursor gels incorporated with Ag⁺ and Sr ions with various molar ratios, and they were successfully converted into the Ag-SrTiO₃ hybrid nanoparticles by the hydrothermal treatment at 230 °C in strontium hydroxide aqueous solutions. The morphology of the SrTiO₃ nanoparticles is dendritic in the presence and absence of Ag⁺ ions. The precursor gels, which act as the high reactive precursor, give rise to high nucleation and growth rates under the hydrothermal conditions, and the resultant diffusion-limited aggregation phenomena facilitate the dendritic growth of SrTiO₃. From the field-emission transmission electron microscope observation of these Ag-SrTiO₃ hybrid nanoparticles, the Ag nanoparticles with a size of a few tens of nanometers are distributed without severe agglomeration, owing to the competitive formation reactions of Ag and SrTiO₃.
doi_str_mv 10.3390/nano5020386
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3470df59dbb04edeab50b3d8825a2a26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3470df59dbb04edeab50b3d8825a2a26</doaj_id><sourcerecordid>3742380701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-9eee32f91920655567da21bd3561faa44fab8e2925db13081eefd77aec9767103</originalsourceid><addsrcrecordid>eNqFksFrFDEUhwdRbKk9eZcBL4KMviSTSXIRpNRuoeph68VLSCZvullmJmuSKcx_79Rdy9aLuSQkH997L_yK4jWBD4wp-DiaMXCgwGTzrDilIFRVK0WeH51PivOUtrAsRZjk7GVxQiWrBRB5Wvxcz2PeYPKpDF259v09xmqdYxizn4by1mczmozlarbRu_LbUm5nYvZtj6m0c7kOfXWFfbWaXQyLKA6mL79i3gT3qnjRmT7h-WE_K358uby9WFU336-uLz7fVC0HmSuFiIx2iigKDee8Ec5QYh3jDemMqevOWIlUUe4sYSAJYueEMNgq0QgC7Ky43ntdMFu9i34wcdbBeP3nIsQ7fehYP0ztOq6ctVCjQ2M5WOakpNxQQ5vF9Wnv2k12QNfimKPpn0ifvox-o-_CveaMUAV8Ebw7CGL4NWHKevCpxb43I4YpaSIlEaIGYP9HBQOoJSi5oG__QbdhiuPyq5o0qgGQdU0W6v2eamNIKWL32DcB_ZAWfZSWhX5zPOoj-zcb7Dej87rz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696008441</pqid></control><display><type>article</type><title>Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method</title><source>Access via ProQuest (Open Access)</source><source>IngentaConnect Journals</source><source>PubMed Central</source><creator>Ueno, Shintaro ; Nakashima, Kouichi ; Sakamoto, Yasunao ; Wada, Satoshi</creator><creatorcontrib>Ueno, Shintaro ; Nakashima, Kouichi ; Sakamoto, Yasunao ; Wada, Satoshi</creatorcontrib><description>Silver (Ag) nanoparticle-loaded strontium titanate (SrTiO₃) nanoparticles were attempted to be synthesized by a sol-gel-hydrothermal method. We prepared the titanium oxide precursor gels incorporated with Ag⁺ and Sr ions with various molar ratios, and they were successfully converted into the Ag-SrTiO₃ hybrid nanoparticles by the hydrothermal treatment at 230 °C in strontium hydroxide aqueous solutions. The morphology of the SrTiO₃ nanoparticles is dendritic in the presence and absence of Ag⁺ ions. The precursor gels, which act as the high reactive precursor, give rise to high nucleation and growth rates under the hydrothermal conditions, and the resultant diffusion-limited aggregation phenomena facilitate the dendritic growth of SrTiO₃. From the field-emission transmission electron microscope observation of these Ag-SrTiO₃ hybrid nanoparticles, the Ag nanoparticles with a size of a few tens of nanometers are distributed without severe agglomeration, owing to the competitive formation reactions of Ag and SrTiO₃.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano5020386</identifier><identifier>PMID: 28347018</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agglomeration ; Aqueous solutions ; Diffusion rate ; Electron microscopes ; Gels ; hybrid particles ; Ions ; Morphology ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Nanostructure ; Precursors ; Ratios ; Silver ; silver nanoparticles ; Sol-gel processes ; sol-gel-hydrothermal method ; Strontium ; strontium titanate ; Strontium titanates ; Titanium</subject><ispartof>Nanomaterials (Basel, Switzerland), 2015-03, Vol.5 (2), p.386-397</ispartof><rights>Copyright MDPI AG 2015</rights><rights>2015 by the authors; licensee MDPI, Basel, Switzerland. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-9eee32f91920655567da21bd3561faa44fab8e2925db13081eefd77aec9767103</citedby><cites>FETCH-LOGICAL-c508t-9eee32f91920655567da21bd3561faa44fab8e2925db13081eefd77aec9767103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1696008441/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1696008441?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28347018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ueno, Shintaro</creatorcontrib><creatorcontrib>Nakashima, Kouichi</creatorcontrib><creatorcontrib>Sakamoto, Yasunao</creatorcontrib><creatorcontrib>Wada, Satoshi</creatorcontrib><title>Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>Silver (Ag) nanoparticle-loaded strontium titanate (SrTiO₃) nanoparticles were attempted to be synthesized by a sol-gel-hydrothermal method. We prepared the titanium oxide precursor gels incorporated with Ag⁺ and Sr ions with various molar ratios, and they were successfully converted into the Ag-SrTiO₃ hybrid nanoparticles by the hydrothermal treatment at 230 °C in strontium hydroxide aqueous solutions. The morphology of the SrTiO₃ nanoparticles is dendritic in the presence and absence of Ag⁺ ions. The precursor gels, which act as the high reactive precursor, give rise to high nucleation and growth rates under the hydrothermal conditions, and the resultant diffusion-limited aggregation phenomena facilitate the dendritic growth of SrTiO₃. From the field-emission transmission electron microscope observation of these Ag-SrTiO₃ hybrid nanoparticles, the Ag nanoparticles with a size of a few tens of nanometers are distributed without severe agglomeration, owing to the competitive formation reactions of Ag and SrTiO₃.</description><subject>Agglomeration</subject><subject>Aqueous solutions</subject><subject>Diffusion rate</subject><subject>Electron microscopes</subject><subject>Gels</subject><subject>hybrid particles</subject><subject>Ions</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Precursors</subject><subject>Ratios</subject><subject>Silver</subject><subject>silver nanoparticles</subject><subject>Sol-gel processes</subject><subject>sol-gel-hydrothermal method</subject><subject>Strontium</subject><subject>strontium titanate</subject><subject>Strontium titanates</subject><subject>Titanium</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFksFrFDEUhwdRbKk9eZcBL4KMviSTSXIRpNRuoeph68VLSCZvullmJmuSKcx_79Rdy9aLuSQkH997L_yK4jWBD4wp-DiaMXCgwGTzrDilIFRVK0WeH51PivOUtrAsRZjk7GVxQiWrBRB5Wvxcz2PeYPKpDF259v09xmqdYxizn4by1mczmozlarbRu_LbUm5nYvZtj6m0c7kOfXWFfbWaXQyLKA6mL79i3gT3qnjRmT7h-WE_K358uby9WFU336-uLz7fVC0HmSuFiIx2iigKDee8Ec5QYh3jDemMqevOWIlUUe4sYSAJYueEMNgq0QgC7Ky43ntdMFu9i34wcdbBeP3nIsQ7fehYP0ztOq6ctVCjQ2M5WOakpNxQQ5vF9Wnv2k12QNfimKPpn0ifvox-o-_CveaMUAV8Ebw7CGL4NWHKevCpxb43I4YpaSIlEaIGYP9HBQOoJSi5oG__QbdhiuPyq5o0qgGQdU0W6v2eamNIKWL32DcB_ZAWfZSWhX5zPOoj-zcb7Dej87rz</recordid><startdate>20150324</startdate><enddate>20150324</enddate><creator>Ueno, Shintaro</creator><creator>Nakashima, Kouichi</creator><creator>Sakamoto, Yasunao</creator><creator>Wada, Satoshi</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150324</creationdate><title>Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method</title><author>Ueno, Shintaro ; Nakashima, Kouichi ; Sakamoto, Yasunao ; Wada, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-9eee32f91920655567da21bd3561faa44fab8e2925db13081eefd77aec9767103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agglomeration</topic><topic>Aqueous solutions</topic><topic>Diffusion rate</topic><topic>Electron microscopes</topic><topic>Gels</topic><topic>hybrid particles</topic><topic>Ions</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Precursors</topic><topic>Ratios</topic><topic>Silver</topic><topic>silver nanoparticles</topic><topic>Sol-gel processes</topic><topic>sol-gel-hydrothermal method</topic><topic>Strontium</topic><topic>strontium titanate</topic><topic>Strontium titanates</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ueno, Shintaro</creatorcontrib><creatorcontrib>Nakashima, Kouichi</creatorcontrib><creatorcontrib>Sakamoto, Yasunao</creatorcontrib><creatorcontrib>Wada, Satoshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ueno, Shintaro</au><au>Nakashima, Kouichi</au><au>Sakamoto, Yasunao</au><au>Wada, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2015-03-24</date><risdate>2015</risdate><volume>5</volume><issue>2</issue><spage>386</spage><epage>397</epage><pages>386-397</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Silver (Ag) nanoparticle-loaded strontium titanate (SrTiO₃) nanoparticles were attempted to be synthesized by a sol-gel-hydrothermal method. We prepared the titanium oxide precursor gels incorporated with Ag⁺ and Sr ions with various molar ratios, and they were successfully converted into the Ag-SrTiO₃ hybrid nanoparticles by the hydrothermal treatment at 230 °C in strontium hydroxide aqueous solutions. The morphology of the SrTiO₃ nanoparticles is dendritic in the presence and absence of Ag⁺ ions. The precursor gels, which act as the high reactive precursor, give rise to high nucleation and growth rates under the hydrothermal conditions, and the resultant diffusion-limited aggregation phenomena facilitate the dendritic growth of SrTiO₃. From the field-emission transmission electron microscope observation of these Ag-SrTiO₃ hybrid nanoparticles, the Ag nanoparticles with a size of a few tens of nanometers are distributed without severe agglomeration, owing to the competitive formation reactions of Ag and SrTiO₃.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28347018</pmid><doi>10.3390/nano5020386</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2015-03, Vol.5 (2), p.386-397
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3470df59dbb04edeab50b3d8825a2a26
source Access via ProQuest (Open Access); IngentaConnect Journals; PubMed Central
subjects Agglomeration
Aqueous solutions
Diffusion rate
Electron microscopes
Gels
hybrid particles
Ions
Morphology
Nanocomposites
Nanomaterials
Nanoparticles
Nanostructure
Precursors
Ratios
Silver
silver nanoparticles
Sol-gel processes
sol-gel-hydrothermal method
Strontium
strontium titanate
Strontium titanates
Titanium
title Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Silver-Strontium%20Titanate%20Hybrid%20Nanoparticles%20by%20Sol-Gel-Hydrothermal%20Method&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Ueno,%20Shintaro&rft.date=2015-03-24&rft.volume=5&rft.issue=2&rft.spage=386&rft.epage=397&rft.pages=386-397&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano5020386&rft_dat=%3Cproquest_doaj_%3E3742380701%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-9eee32f91920655567da21bd3561faa44fab8e2925db13081eefd77aec9767103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1696008441&rft_id=info:pmid/28347018&rfr_iscdi=true