Loading…
Optimized Fast Filtration-Based Sampling and Extraction Enables Precise and Absolute Quantification of the Escherichia coli Central Carbon Metabolome
Precise and accurate quantification is a prerequisite for interpretation of targeted metabolomics data, but this task is challenged by the inherent instability of the analytes. The sampling, quenching, extraction, and sample purification conditions required to recover and stabilize metabolites in re...
Saved in:
Published in: | Metabolites 2023-01, Vol.13 (2), p.150 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Precise and accurate quantification is a prerequisite for interpretation of targeted metabolomics data, but this task is challenged by the inherent instability of the analytes. The sampling, quenching, extraction, and sample purification conditions required to recover and stabilize metabolites in representative extracts have also been proven highly dependent on species-specific properties. For
, unspecific leakage has been demonstrated for conventional microbial metabolomics sampling protocols. We herein present a fast filtration-based sampling protocol for this widely applied model organism, focusing on pitfalls such as inefficient filtration, selective loss of biomass, matrix contamination, and membrane permeabilization and leakage. We evaluate the effect of and need for removal of extracellular components and demonstrate how residual salts can challenge analytical accuracy of hyphenated mass spectrometric analyses, even when sophisticated correction strategies are applied. Laborious extraction procedures are bypassed by direct extraction in cold acetonitrile:water:methanol (3:5:2,
%), ensuring compatibility with sample concentration and thus, any downstream analysis. By applying this protocol, we achieve and demonstrate high precision and low metabolite turnover, and, followingly, minimal perturbation of the inherent metabolic state. This allows us to herein report absolute intracellular concentrations in
and explore its central carbon metabolome at several commonly applied cultivation conditions. |
---|---|
ISSN: | 2218-1989 2218-1989 |
DOI: | 10.3390/metabo13020150 |