Loading…
Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance
In network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, demonstrat...
Saved in:
Published in: | Scientific reports 2021-10, Vol.11 (1), p.19939-19939, Article 19939 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3 |
container_end_page | 19939 |
container_issue | 1 |
container_start_page | 19939 |
container_title | Scientific reports |
container_volume | 11 |
creator | Aref, Samin Neal, Zachary P. |
description | In network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, demonstrating their practicality by applying them to partition signed networks of collaboration and opposition in the US House of Representatives. These models guarantee a globally optimal network partition and can be practically applied to signed networks containing up to 30,000 edges. In the US House context, we find that a three-cluster partition is better than a conventional two-cluster partition, where the otherwise hidden third coalition is composed of highly effective legislators who are ideologically aligned with the majority party. |
doi_str_mv | 10.1038/s41598-021-98139-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_34a0bce2163942f3b3faba2aff7cd3db</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_34a0bce2163942f3b3faba2aff7cd3db</doaj_id><sourcerecordid>2579868110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3</originalsourceid><addsrcrecordid>eNp9UstuEzEUHSEQrUJ_gAWyxIbNgMcee-wNEqoKjVQJCeja8niuE4eJHexJo_AD_Da3SSktC7yxr33OuQ-fqnrZ0LcN5epdaRuhVU1ZU2vVcF3vnlSnjLaiZpyxpw_OJ9VZKSuKSzDdNvp5dcJbyahS6rT6NR8gTsHvQ1yQZRgwIi7ZMUwhxUJCJNMSyPVXcpm2BUjy5AtsMhQk2SncQCH9nqTNFNZ2HPdkY_N0oN7KlbCIMJAI0y7l74i0BcMUyQIiZMzxE8PejjY6eFE983YscHa3z6rrjxffzi_rq8-f5ucfrmonWjrVTErppGDc25ZJpqz1YpDadsJ3SmolNBMCrLOKeyUGIQfgTmjZed9IRYHPqvlRd0h2ZTYZ6857k2wwh4uUF-a2BTeC4a2lvQPWSK5b5nmPSXvLrPedG_jQo9b7o9Zm269hcDgT7OqR6OOXGJZmkW6ManUnWYMCb-4EcvqxhTKZdSgORpwI4LgNE4p2lOJPI_T1P9BV2uaIo0JUp5VUDdpiVrEjyuVUSgZ_X0xDza1tzNE2Bm1jDrYxOyS9etjGPeWPSRDAj4CCT3EB-W_u_8j-Bn-R0Zc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579868110</pqid></control><display><type>article</type><title>Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Aref, Samin ; Neal, Zachary P.</creator><creatorcontrib>Aref, Samin ; Neal, Zachary P.</creatorcontrib><description>In network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, demonstrating their practicality by applying them to partition signed networks of collaboration and opposition in the US House of Representatives. These models guarantee a globally optimal network partition and can be practically applied to signed networks containing up to 30,000 edges. In the US House context, we find that a three-cluster partition is better than a conventional two-cluster partition, where the otherwise hidden third coalition is composed of highly effective legislators who are ideologically aligned with the majority party.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-98139-w</identifier><identifier>PMID: 34620888</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1041 ; 639/705/1042 ; 639/705/117 ; Humanities and Social Sciences ; Linear programming ; multidisciplinary ; Scandals ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2021-10, Vol.11 (1), p.19939-19939, Article 19939</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3</citedby><cites>FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2579868110/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2579868110?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34620888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aref, Samin</creatorcontrib><creatorcontrib>Neal, Zachary P.</creatorcontrib><title>Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, demonstrating their practicality by applying them to partition signed networks of collaboration and opposition in the US House of Representatives. These models guarantee a globally optimal network partition and can be practically applied to signed networks containing up to 30,000 edges. In the US House context, we find that a three-cluster partition is better than a conventional two-cluster partition, where the otherwise hidden third coalition is composed of highly effective legislators who are ideologically aligned with the majority party.</description><subject>639/705/1041</subject><subject>639/705/1042</subject><subject>639/705/117</subject><subject>Humanities and Social Sciences</subject><subject>Linear programming</subject><subject>multidisciplinary</subject><subject>Scandals</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UstuEzEUHSEQrUJ_gAWyxIbNgMcee-wNEqoKjVQJCeja8niuE4eJHexJo_AD_Da3SSktC7yxr33OuQ-fqnrZ0LcN5epdaRuhVU1ZU2vVcF3vnlSnjLaiZpyxpw_OJ9VZKSuKSzDdNvp5dcJbyahS6rT6NR8gTsHvQ1yQZRgwIi7ZMUwhxUJCJNMSyPVXcpm2BUjy5AtsMhQk2SncQCH9nqTNFNZ2HPdkY_N0oN7KlbCIMJAI0y7l74i0BcMUyQIiZMzxE8PejjY6eFE983YscHa3z6rrjxffzi_rq8-f5ucfrmonWjrVTErppGDc25ZJpqz1YpDadsJ3SmolNBMCrLOKeyUGIQfgTmjZed9IRYHPqvlRd0h2ZTYZ6857k2wwh4uUF-a2BTeC4a2lvQPWSK5b5nmPSXvLrPedG_jQo9b7o9Zm269hcDgT7OqR6OOXGJZmkW6ManUnWYMCb-4EcvqxhTKZdSgORpwI4LgNE4p2lOJPI_T1P9BV2uaIo0JUp5VUDdpiVrEjyuVUSgZ_X0xDza1tzNE2Bm1jDrYxOyS9etjGPeWPSRDAj4CCT3EB-W_u_8j-Bn-R0Zc</recordid><startdate>20211007</startdate><enddate>20211007</enddate><creator>Aref, Samin</creator><creator>Neal, Zachary P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211007</creationdate><title>Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance</title><author>Aref, Samin ; Neal, Zachary P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/705/1041</topic><topic>639/705/1042</topic><topic>639/705/117</topic><topic>Humanities and Social Sciences</topic><topic>Linear programming</topic><topic>multidisciplinary</topic><topic>Scandals</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aref, Samin</creatorcontrib><creatorcontrib>Neal, Zachary P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aref, Samin</au><au>Neal, Zachary P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-10-07</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>19939</spage><epage>19939</epage><pages>19939-19939</pages><artnum>19939</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, demonstrating their practicality by applying them to partition signed networks of collaboration and opposition in the US House of Representatives. These models guarantee a globally optimal network partition and can be practically applied to signed networks containing up to 30,000 edges. In the US House context, we find that a three-cluster partition is better than a conventional two-cluster partition, where the otherwise hidden third coalition is composed of highly effective legislators who are ideologically aligned with the majority party.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34620888</pmid><doi>10.1038/s41598-021-98139-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2021-10, Vol.11 (1), p.19939-19939, Article 19939 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_34a0bce2163942f3b3faba2aff7cd3db |
source | PubMed Central Free; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705/1041 639/705/1042 639/705/117 Humanities and Social Sciences Linear programming multidisciplinary Scandals Science Science (multidisciplinary) |
title | Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A10%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20hidden%20coalitions%20in%20the%20US%20House%20of%20Representatives%20by%20optimally%20partitioning%20signed%20networks%20based%20on%20generalized%20balance&rft.jtitle=Scientific%20reports&rft.au=Aref,%20Samin&rft.date=2021-10-07&rft.volume=11&rft.issue=1&rft.spage=19939&rft.epage=19939&rft.pages=19939-19939&rft.artnum=19939&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-98139-w&rft_dat=%3Cproquest_doaj_%3E2579868110%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2579868110&rft_id=info:pmid/34620888&rfr_iscdi=true |