Loading…

Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance

In network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, demonstrat...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-10, Vol.11 (1), p.19939-19939, Article 19939
Main Authors: Aref, Samin, Neal, Zachary P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3
cites cdi_FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3
container_end_page 19939
container_issue 1
container_start_page 19939
container_title Scientific reports
container_volume 11
creator Aref, Samin
Neal, Zachary P.
description In network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, demonstrating their practicality by applying them to partition signed networks of collaboration and opposition in the US House of Representatives. These models guarantee a globally optimal network partition and can be practically applied to signed networks containing up to 30,000 edges. In the US House context, we find that a three-cluster partition is better than a conventional two-cluster partition, where the otherwise hidden third coalition is composed of highly effective legislators who are ideologically aligned with the majority party.
doi_str_mv 10.1038/s41598-021-98139-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_34a0bce2163942f3b3faba2aff7cd3db</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_34a0bce2163942f3b3faba2aff7cd3db</doaj_id><sourcerecordid>2579868110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3</originalsourceid><addsrcrecordid>eNp9UstuEzEUHSEQrUJ_gAWyxIbNgMcee-wNEqoKjVQJCeja8niuE4eJHexJo_AD_Da3SSktC7yxr33OuQ-fqnrZ0LcN5epdaRuhVU1ZU2vVcF3vnlSnjLaiZpyxpw_OJ9VZKSuKSzDdNvp5dcJbyahS6rT6NR8gTsHvQ1yQZRgwIi7ZMUwhxUJCJNMSyPVXcpm2BUjy5AtsMhQk2SncQCH9nqTNFNZ2HPdkY_N0oN7KlbCIMJAI0y7l74i0BcMUyQIiZMzxE8PejjY6eFE983YscHa3z6rrjxffzi_rq8-f5ucfrmonWjrVTErppGDc25ZJpqz1YpDadsJ3SmolNBMCrLOKeyUGIQfgTmjZed9IRYHPqvlRd0h2ZTYZ6857k2wwh4uUF-a2BTeC4a2lvQPWSK5b5nmPSXvLrPedG_jQo9b7o9Zm269hcDgT7OqR6OOXGJZmkW6ManUnWYMCb-4EcvqxhTKZdSgORpwI4LgNE4p2lOJPI_T1P9BV2uaIo0JUp5VUDdpiVrEjyuVUSgZ_X0xDza1tzNE2Bm1jDrYxOyS9etjGPeWPSRDAj4CCT3EB-W_u_8j-Bn-R0Zc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579868110</pqid></control><display><type>article</type><title>Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Aref, Samin ; Neal, Zachary P.</creator><creatorcontrib>Aref, Samin ; Neal, Zachary P.</creatorcontrib><description>In network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, demonstrating their practicality by applying them to partition signed networks of collaboration and opposition in the US House of Representatives. These models guarantee a globally optimal network partition and can be practically applied to signed networks containing up to 30,000 edges. In the US House context, we find that a three-cluster partition is better than a conventional two-cluster partition, where the otherwise hidden third coalition is composed of highly effective legislators who are ideologically aligned with the majority party.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-98139-w</identifier><identifier>PMID: 34620888</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1041 ; 639/705/1042 ; 639/705/117 ; Humanities and Social Sciences ; Linear programming ; multidisciplinary ; Scandals ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2021-10, Vol.11 (1), p.19939-19939, Article 19939</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3</citedby><cites>FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2579868110/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2579868110?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34620888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aref, Samin</creatorcontrib><creatorcontrib>Neal, Zachary P.</creatorcontrib><title>Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, demonstrating their practicality by applying them to partition signed networks of collaboration and opposition in the US House of Representatives. These models guarantee a globally optimal network partition and can be practically applied to signed networks containing up to 30,000 edges. In the US House context, we find that a three-cluster partition is better than a conventional two-cluster partition, where the otherwise hidden third coalition is composed of highly effective legislators who are ideologically aligned with the majority party.</description><subject>639/705/1041</subject><subject>639/705/1042</subject><subject>639/705/117</subject><subject>Humanities and Social Sciences</subject><subject>Linear programming</subject><subject>multidisciplinary</subject><subject>Scandals</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UstuEzEUHSEQrUJ_gAWyxIbNgMcee-wNEqoKjVQJCeja8niuE4eJHexJo_AD_Da3SSktC7yxr33OuQ-fqnrZ0LcN5epdaRuhVU1ZU2vVcF3vnlSnjLaiZpyxpw_OJ9VZKSuKSzDdNvp5dcJbyahS6rT6NR8gTsHvQ1yQZRgwIi7ZMUwhxUJCJNMSyPVXcpm2BUjy5AtsMhQk2SncQCH9nqTNFNZ2HPdkY_N0oN7KlbCIMJAI0y7l74i0BcMUyQIiZMzxE8PejjY6eFE983YscHa3z6rrjxffzi_rq8-f5ucfrmonWjrVTErppGDc25ZJpqz1YpDadsJ3SmolNBMCrLOKeyUGIQfgTmjZed9IRYHPqvlRd0h2ZTYZ6857k2wwh4uUF-a2BTeC4a2lvQPWSK5b5nmPSXvLrPedG_jQo9b7o9Zm269hcDgT7OqR6OOXGJZmkW6ManUnWYMCb-4EcvqxhTKZdSgORpwI4LgNE4p2lOJPI_T1P9BV2uaIo0JUp5VUDdpiVrEjyuVUSgZ_X0xDza1tzNE2Bm1jDrYxOyS9etjGPeWPSRDAj4CCT3EB-W_u_8j-Bn-R0Zc</recordid><startdate>20211007</startdate><enddate>20211007</enddate><creator>Aref, Samin</creator><creator>Neal, Zachary P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211007</creationdate><title>Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance</title><author>Aref, Samin ; Neal, Zachary P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/705/1041</topic><topic>639/705/1042</topic><topic>639/705/117</topic><topic>Humanities and Social Sciences</topic><topic>Linear programming</topic><topic>multidisciplinary</topic><topic>Scandals</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aref, Samin</creatorcontrib><creatorcontrib>Neal, Zachary P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aref, Samin</au><au>Neal, Zachary P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-10-07</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>19939</spage><epage>19939</epage><pages>19939-19939</pages><artnum>19939</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, demonstrating their practicality by applying them to partition signed networks of collaboration and opposition in the US House of Representatives. These models guarantee a globally optimal network partition and can be practically applied to signed networks containing up to 30,000 edges. In the US House context, we find that a three-cluster partition is better than a conventional two-cluster partition, where the otherwise hidden third coalition is composed of highly effective legislators who are ideologically aligned with the majority party.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34620888</pmid><doi>10.1038/s41598-021-98139-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-10, Vol.11 (1), p.19939-19939, Article 19939
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_34a0bce2163942f3b3faba2aff7cd3db
source PubMed Central Free; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/705/1041
639/705/1042
639/705/117
Humanities and Social Sciences
Linear programming
multidisciplinary
Scandals
Science
Science (multidisciplinary)
title Identifying hidden coalitions in the US House of Representatives by optimally partitioning signed networks based on generalized balance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A10%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20hidden%20coalitions%20in%20the%20US%20House%20of%20Representatives%20by%20optimally%20partitioning%20signed%20networks%20based%20on%20generalized%20balance&rft.jtitle=Scientific%20reports&rft.au=Aref,%20Samin&rft.date=2021-10-07&rft.volume=11&rft.issue=1&rft.spage=19939&rft.epage=19939&rft.pages=19939-19939&rft.artnum=19939&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-98139-w&rft_dat=%3Cproquest_doaj_%3E2579868110%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-2666c6523fa42628aaf5d69a75f7869859255eaca83f85d56de3c5967ff1680e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2579868110&rft_id=info:pmid/34620888&rfr_iscdi=true