Loading…
Mechanical properties improving and microstructure characterization of inorganic artificial stone binder
In this article, aiming at the problems of low mechanical properties and the unstable structure of the binder in inorganic artificial stone, performance improvements were studied. The effects of 12 materials of blast-furnace slag (BFS), fly ash (FA), and kaolin on the properties and microstructure o...
Saved in:
Published in: | Science and engineering of composite materials 2022-10, Vol.29 (1), p.335-345 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, aiming at the problems of low mechanical properties and the unstable structure of the binder in inorganic artificial stone, performance improvements were studied. The effects of 12 materials of blast-furnace slag (BFS), fly ash (FA), and kaolin on the properties and microstructure of inorganic binders were systematically studied and analyzed. As a result, the compressive strength of BFS-2, FA-1, and FA-2 binder was increased by 10.0, 6.0, and 1.5%, and the flexural strength was increased by 44.8, 79.2, and 1.3%, respectively. It was worth noting that BFS and FA could effectively promote hydration reactions due to active materials and boost the growth of C–S–H and CH, leading to the inorganic binder forming a stable structure. Thus, this work systematically designs and prepares inorganic binders with high compressive strength and excellent flexural strength. This reveals how inorganic materials affect the properties of inorganic binders on the microstructure and offer a new idea for the development of this field. |
---|---|
ISSN: | 2191-0359 0792-1233 2191-0359 |
DOI: | 10.1515/secm-2022-0162 |