Loading…

Development of MEMS Airflow Volumetric Flow Sensing System with Single Piezoelectric Micromachined Ultrasonic Transducer (PMUT) Array

Compared to conventional ultrasonic flowmeters using multiple transducers, this paper reports, for the first time, an airflow volumetric flowmeter using a signal PMUT array to measure the flow rate in a rectangular pipe. The PMUT around 200 kHz is selected to fit the system requirements. All PMUT el...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2022-11, Vol.13 (11), p.1979
Main Authors: Xiu, Xueying, Yang, Haolin, Ji, Meilin, Lv, Haochen, Zhang, Songsong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Compared to conventional ultrasonic flowmeters using multiple transducers, this paper reports, for the first time, an airflow volumetric flowmeter using a signal PMUT array to measure the flow rate in a rectangular pipe. The PMUT around 200 kHz is selected to fit the system requirements. All PMUT elements on this single array are then electrically grouped into transmitter and receiver. In order to minimize the crosstalk signal between transmitter and receiver, a phase shift signal is applied at the transmitter to reduce the amplitude of the crosstalk signal by 87.8%, hence, the resultant high sensing resolution. Based on the analog signal extracted from the single PMUT array, a complete flow sensing system is built by using the cross-correlation method and cosine interpolation, whereby the change in flow rate is reflected by the time of flight difference (dTof) recorded at the receiver. Meanwhile, the acoustic path self-calibration is realized by using multiple echoes. Compared with the previously reported MEMS flowmeters with dual or multiple PMUT devices, this paper proposes a single PMUT array flow sensing system, which is able to measure the flow rate changes up to 4 m3/h. With the implementation of a single device, the problem of ultrasound device/reflector misalignment during system setup is completely eradicated.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi13111979