Loading…

Multirate Simulations of String Vibrations Including Nonlinear Fret-String Interactions Using the Functional Transformation Method

The functional transformation method (FTM) is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on advances in signal processing 2004-06, Vol.2004 (7), p.949-963
Main Authors: R. Rabenstein, L. Trautmann
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 963
container_issue 7
container_start_page 949
container_title EURASIP journal on advances in signal processing
container_volume 2004
creator R. Rabenstein
L. Trautmann
description The functional transformation method (FTM) is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrating lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the computational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide simulations.
doi_str_mv 10.1155/S1687617204312059
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_35062fd83fc14d96b8d3d2dceb376513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_35062fd83fc14d96b8d3d2dceb376513</doaj_id><sourcerecordid>oai_doaj_org_article_35062fd83fc14d96b8d3d2dceb376513</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_35062fd83fc14d96b8d3d2dceb3765133</originalsourceid><addsrcrecordid>eNqtzDtOxDAYBGALgcTyOACdLxDwY-1ka0REiqXJQms5sbPrlWOj305By8lRQsQJqGb0aTQIPVDySKkQTy2VVSlpyciWU0bE7gJtZiokrcjlXy_ZNbpJ6UyIkIywDfreTz470Nni1o2T19nFkHAccJvBhSP-cB2s2ITeT2bGtxi8C1YDrsHmYp02IVvQ_e_4Pc2UTxbXU1hMe3wAHdIQYVwe8d7mUzR36GrQPtn7NW9RU78cnl8LE_VZfYIbNXypqJ1aIMJRaciu91ZxQSQbTMWHnm7NTnaV4YaZ3na8lIJy_p9fP5B_c1I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multirate Simulations of String Vibrations Including Nonlinear Fret-String Interactions Using the Functional Transformation Method</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>R. Rabenstein ; L. Trautmann</creator><creatorcontrib>R. Rabenstein ; L. Trautmann</creatorcontrib><description>The functional transformation method (FTM) is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrating lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the computational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide simulations.</description><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1155/S1687617204312059</identifier><language>eng</language><publisher>SpringerOpen</publisher><subject>functional transformation ; multidimensional system ; multirate approach ; nonlinear ; partial differential equation ; vibrating string</subject><ispartof>EURASIP journal on advances in signal processing, 2004-06, Vol.2004 (7), p.949-963</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>R. Rabenstein</creatorcontrib><creatorcontrib>L. Trautmann</creatorcontrib><title>Multirate Simulations of String Vibrations Including Nonlinear Fret-String Interactions Using the Functional Transformation Method</title><title>EURASIP journal on advances in signal processing</title><description>The functional transformation method (FTM) is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrating lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the computational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide simulations.</description><subject>functional transformation</subject><subject>multidimensional system</subject><subject>multirate approach</subject><subject>nonlinear</subject><subject>partial differential equation</subject><subject>vibrating string</subject><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtzDtOxDAYBGALgcTyOACdLxDwY-1ka0REiqXJQms5sbPrlWOj305By8lRQsQJqGb0aTQIPVDySKkQTy2VVSlpyciWU0bE7gJtZiokrcjlXy_ZNbpJ6UyIkIywDfreTz470Nni1o2T19nFkHAccJvBhSP-cB2s2ITeT2bGtxi8C1YDrsHmYp02IVvQ_e_4Pc2UTxbXU1hMe3wAHdIQYVwe8d7mUzR36GrQPtn7NW9RU78cnl8LE_VZfYIbNXypqJ1aIMJRaciu91ZxQSQbTMWHnm7NTnaV4YaZ3na8lIJy_p9fP5B_c1I</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>R. Rabenstein</creator><creator>L. Trautmann</creator><general>SpringerOpen</general><scope>DOA</scope></search><sort><creationdate>20040601</creationdate><title>Multirate Simulations of String Vibrations Including Nonlinear Fret-String Interactions Using the Functional Transformation Method</title><author>R. Rabenstein ; L. Trautmann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_35062fd83fc14d96b8d3d2dceb3765133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>functional transformation</topic><topic>multidimensional system</topic><topic>multirate approach</topic><topic>nonlinear</topic><topic>partial differential equation</topic><topic>vibrating string</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>R. Rabenstein</creatorcontrib><creatorcontrib>L. Trautmann</creatorcontrib><collection>Directory of Open Access Journals</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>R. Rabenstein</au><au>L. Trautmann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multirate Simulations of String Vibrations Including Nonlinear Fret-String Interactions Using the Functional Transformation Method</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>2004</volume><issue>7</issue><spage>949</spage><epage>963</epage><pages>949-963</pages><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>The functional transformation method (FTM) is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrating lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the computational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide simulations.</abstract><pub>SpringerOpen</pub><doi>10.1155/S1687617204312059</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-6172
ispartof EURASIP journal on advances in signal processing, 2004-06, Vol.2004 (7), p.949-963
issn 1687-6172
1687-6180
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_35062fd83fc14d96b8d3d2dceb376513
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects functional transformation
multidimensional system
multirate approach
nonlinear
partial differential equation
vibrating string
title Multirate Simulations of String Vibrations Including Nonlinear Fret-String Interactions Using the Functional Transformation Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multirate%20Simulations%20of%20String%20Vibrations%20Including%20Nonlinear%20Fret-String%20Interactions%20Using%20the%20Functional%20Transformation%20Method&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=R.%20Rabenstein&rft.date=2004-06-01&rft.volume=2004&rft.issue=7&rft.spage=949&rft.epage=963&rft.pages=949-963&rft.issn=1687-6172&rft.eissn=1687-6180&rft_id=info:doi/10.1155/S1687617204312059&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_35062fd83fc14d96b8d3d2dceb376513%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_35062fd83fc14d96b8d3d2dceb3765133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true