Loading…

A multi-step nucleation process determines the kinetics of prion-like domain phase separation

Compartmentalization by liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the organization of biomolecules in space and time. Here, we combine rapid-mixing time-resolved small-angle X-ray scattering (SAXS) approaches to characterize the assembly kinetics of a pro...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-07, Vol.12 (1), p.4513-4513, Article 4513
Main Authors: Martin, Erik W., Harmon, Tyler S., Hopkins, Jesse B., Chakravarthy, Srinivas, Incicco, J. Jeremías, Schuck, Peter, Soranno, Andrea, Mittag, Tanja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383
cites cdi_FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383
container_end_page 4513
container_issue 1
container_start_page 4513
container_title Nature communications
container_volume 12
creator Martin, Erik W.
Harmon, Tyler S.
Hopkins, Jesse B.
Chakravarthy, Srinivas
Incicco, J. Jeremías
Schuck, Peter
Soranno, Andrea
Mittag, Tanja
description Compartmentalization by liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the organization of biomolecules in space and time. Here, we combine rapid-mixing time-resolved small-angle X-ray scattering (SAXS) approaches to characterize the assembly kinetics of a prototypical prion-like domain with equilibrium techniques that characterize its phase boundaries and the size distribution of clusters prior to phase separation. We find two kinetic regimes on the micro- to millisecond timescale that are distinguished by the size distribution of clusters. At the nanoscale, small complexes are formed with low affinity. After initial unfavorable complex assembly, additional monomers are added with higher affinity. At the mesoscale, assembly resembles classical homogeneous nucleation. Careful multi-pronged characterization is required for the understanding of condensate assembly mechanisms and will promote understanding of how the kinetics of biological phase separation is encoded in biomolecules. The nucleation mechanisms of biological protein phase separation are poorly understood. Here, the authors perform time-resolved SAXS experiments with the low-complexity domain (LCD) of hnRNPA1 and uncover multiple kinetic regimes on the micro- to millisecond timescale. Initially, individual proteins collapse. Nucleation then occurs via two steps distinguished by their protein cluster size distributions.
doi_str_mv 10.1038/s41467-021-24727-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3515d63866274f01b905879042d061a9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3515d63866274f01b905879042d061a9</doaj_id><sourcerecordid>2554496460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEolXpH2CBItiwCfgde4NUVTwqVWIDS2TZzs2Mp4k92E4l-utxJ6W0LPDGV_Z3zz22TtO8xOgdRlS-zwwz0XeI4I6wnvTdzZPmmCCGO9wT-vRBfdSc5rxDdVGFJWPPmyPKKMKK8-Pmx1k7L1PxXS6wb8PiJjDFx9DuU3SQcztAgTT7ALktW2ivalW8y20cK1LBbvJX0A5xNr42bU2GNsPepIPKi-bZaKYMp3f7SfP908dv51-6y6-fL87PLjsnKC0dsWQ0BkYqgEoFUowDUYNDqtbW2hEhw5yzmFHBheXOOomBUqIspnykkp40F6vuEM1OV1-zSb90NF4fDmLaaJOq7Qk05ZgPgkohSM9GhK1CXPYKMTIggY2qWh9Wrf1iZxgchJLM9Ej08U3wW72J11pSRHohqsDrVSDm4nV2voDbuhgCuKKxxEiy2ylv76ak-HOBXPTss4NpMgHikjXhnONqqKcVffMPuotLCvU_bynGlGACVYqslEsx5wTjvWOM9G1i9JoYXROjD4nRN7Xp1cO33rf8yUcF6ArkehU2kP7O_o_sbw4izBk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554496460</pqid></control><display><type>article</type><title>A multi-step nucleation process determines the kinetics of prion-like domain phase separation</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Martin, Erik W. ; Harmon, Tyler S. ; Hopkins, Jesse B. ; Chakravarthy, Srinivas ; Incicco, J. Jeremías ; Schuck, Peter ; Soranno, Andrea ; Mittag, Tanja</creator><creatorcontrib>Martin, Erik W. ; Harmon, Tyler S. ; Hopkins, Jesse B. ; Chakravarthy, Srinivas ; Incicco, J. Jeremías ; Schuck, Peter ; Soranno, Andrea ; Mittag, Tanja ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Compartmentalization by liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the organization of biomolecules in space and time. Here, we combine rapid-mixing time-resolved small-angle X-ray scattering (SAXS) approaches to characterize the assembly kinetics of a prototypical prion-like domain with equilibrium techniques that characterize its phase boundaries and the size distribution of clusters prior to phase separation. We find two kinetic regimes on the micro- to millisecond timescale that are distinguished by the size distribution of clusters. At the nanoscale, small complexes are formed with low affinity. After initial unfavorable complex assembly, additional monomers are added with higher affinity. At the mesoscale, assembly resembles classical homogeneous nucleation. Careful multi-pronged characterization is required for the understanding of condensate assembly mechanisms and will promote understanding of how the kinetics of biological phase separation is encoded in biomolecules. The nucleation mechanisms of biological protein phase separation are poorly understood. Here, the authors perform time-resolved SAXS experiments with the low-complexity domain (LCD) of hnRNPA1 and uncover multiple kinetic regimes on the micro- to millisecond timescale. Initially, individual proteins collapse. Nucleation then occurs via two steps distinguished by their protein cluster size distributions.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-24727-z</identifier><identifier>PMID: 34301955</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/535/1261 ; 631/57/2269 ; 631/57/2272/1590 ; 631/57/2272/2276 ; Affinity ; Algorithms ; Assembly ; BASIC BIOLOGICAL SCIENCES ; Biomolecules ; Clusters ; Complexity ; Domains ; Humanities and Social Sciences ; Intrinsically disordered proteins ; Kinetics ; Liquid phases ; Microscopy, Confocal ; Models, Chemical ; Monomers ; multidisciplinary ; Nucleation ; Phase separation ; Prions - chemistry ; Protein Conformation ; Proteins ; SAXS ; Scattering, Small Angle ; Science ; Science (multidisciplinary) ; Size distribution ; Small angle X ray scattering ; Supramolecular assembly ; Thermodynamics ; Time ; X-Ray Diffraction - methods ; X-ray scattering</subject><ispartof>Nature communications, 2021-07, Vol.12 (1), p.4513-4513, Article 4513</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383</citedby><cites>FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383</cites><orcidid>0000-0001-8554-8072 ; 0000-0001-8394-7993 ; 0000-0002-8938-5001 ; 0000-0002-1827-3811 ; 0000-0002-8859-6966 ; 0000000185548072 ; 0000000289385001 ; 0000000183947993 ; 0000000288596966 ; 0000000218273811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554496460/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554496460?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34301955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1810849$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Erik W.</creatorcontrib><creatorcontrib>Harmon, Tyler S.</creatorcontrib><creatorcontrib>Hopkins, Jesse B.</creatorcontrib><creatorcontrib>Chakravarthy, Srinivas</creatorcontrib><creatorcontrib>Incicco, J. Jeremías</creatorcontrib><creatorcontrib>Schuck, Peter</creatorcontrib><creatorcontrib>Soranno, Andrea</creatorcontrib><creatorcontrib>Mittag, Tanja</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>A multi-step nucleation process determines the kinetics of prion-like domain phase separation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Compartmentalization by liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the organization of biomolecules in space and time. Here, we combine rapid-mixing time-resolved small-angle X-ray scattering (SAXS) approaches to characterize the assembly kinetics of a prototypical prion-like domain with equilibrium techniques that characterize its phase boundaries and the size distribution of clusters prior to phase separation. We find two kinetic regimes on the micro- to millisecond timescale that are distinguished by the size distribution of clusters. At the nanoscale, small complexes are formed with low affinity. After initial unfavorable complex assembly, additional monomers are added with higher affinity. At the mesoscale, assembly resembles classical homogeneous nucleation. Careful multi-pronged characterization is required for the understanding of condensate assembly mechanisms and will promote understanding of how the kinetics of biological phase separation is encoded in biomolecules. The nucleation mechanisms of biological protein phase separation are poorly understood. Here, the authors perform time-resolved SAXS experiments with the low-complexity domain (LCD) of hnRNPA1 and uncover multiple kinetic regimes on the micro- to millisecond timescale. Initially, individual proteins collapse. Nucleation then occurs via two steps distinguished by their protein cluster size distributions.</description><subject>631/45/535/1261</subject><subject>631/57/2269</subject><subject>631/57/2272/1590</subject><subject>631/57/2272/2276</subject><subject>Affinity</subject><subject>Algorithms</subject><subject>Assembly</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biomolecules</subject><subject>Clusters</subject><subject>Complexity</subject><subject>Domains</subject><subject>Humanities and Social Sciences</subject><subject>Intrinsically disordered proteins</subject><subject>Kinetics</subject><subject>Liquid phases</subject><subject>Microscopy, Confocal</subject><subject>Models, Chemical</subject><subject>Monomers</subject><subject>multidisciplinary</subject><subject>Nucleation</subject><subject>Phase separation</subject><subject>Prions - chemistry</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>SAXS</subject><subject>Scattering, Small Angle</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Size distribution</subject><subject>Small angle X ray scattering</subject><subject>Supramolecular assembly</subject><subject>Thermodynamics</subject><subject>Time</subject><subject>X-Ray Diffraction - methods</subject><subject>X-ray scattering</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhSMEolXpH2CBItiwCfgde4NUVTwqVWIDS2TZzs2Mp4k92E4l-utxJ6W0LPDGV_Z3zz22TtO8xOgdRlS-zwwz0XeI4I6wnvTdzZPmmCCGO9wT-vRBfdSc5rxDdVGFJWPPmyPKKMKK8-Pmx1k7L1PxXS6wb8PiJjDFx9DuU3SQcztAgTT7ALktW2ivalW8y20cK1LBbvJX0A5xNr42bU2GNsPepIPKi-bZaKYMp3f7SfP908dv51-6y6-fL87PLjsnKC0dsWQ0BkYqgEoFUowDUYNDqtbW2hEhw5yzmFHBheXOOomBUqIspnykkp40F6vuEM1OV1-zSb90NF4fDmLaaJOq7Qk05ZgPgkohSM9GhK1CXPYKMTIggY2qWh9Wrf1iZxgchJLM9Ej08U3wW72J11pSRHohqsDrVSDm4nV2voDbuhgCuKKxxEiy2ylv76ak-HOBXPTss4NpMgHikjXhnONqqKcVffMPuotLCvU_bynGlGACVYqslEsx5wTjvWOM9G1i9JoYXROjD4nRN7Xp1cO33rf8yUcF6ArkehU2kP7O_o_sbw4izBk</recordid><startdate>20210723</startdate><enddate>20210723</enddate><creator>Martin, Erik W.</creator><creator>Harmon, Tyler S.</creator><creator>Hopkins, Jesse B.</creator><creator>Chakravarthy, Srinivas</creator><creator>Incicco, J. Jeremías</creator><creator>Schuck, Peter</creator><creator>Soranno, Andrea</creator><creator>Mittag, Tanja</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8554-8072</orcidid><orcidid>https://orcid.org/0000-0001-8394-7993</orcidid><orcidid>https://orcid.org/0000-0002-8938-5001</orcidid><orcidid>https://orcid.org/0000-0002-1827-3811</orcidid><orcidid>https://orcid.org/0000-0002-8859-6966</orcidid><orcidid>https://orcid.org/0000000185548072</orcidid><orcidid>https://orcid.org/0000000289385001</orcidid><orcidid>https://orcid.org/0000000183947993</orcidid><orcidid>https://orcid.org/0000000288596966</orcidid><orcidid>https://orcid.org/0000000218273811</orcidid></search><sort><creationdate>20210723</creationdate><title>A multi-step nucleation process determines the kinetics of prion-like domain phase separation</title><author>Martin, Erik W. ; Harmon, Tyler S. ; Hopkins, Jesse B. ; Chakravarthy, Srinivas ; Incicco, J. Jeremías ; Schuck, Peter ; Soranno, Andrea ; Mittag, Tanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/45/535/1261</topic><topic>631/57/2269</topic><topic>631/57/2272/1590</topic><topic>631/57/2272/2276</topic><topic>Affinity</topic><topic>Algorithms</topic><topic>Assembly</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biomolecules</topic><topic>Clusters</topic><topic>Complexity</topic><topic>Domains</topic><topic>Humanities and Social Sciences</topic><topic>Intrinsically disordered proteins</topic><topic>Kinetics</topic><topic>Liquid phases</topic><topic>Microscopy, Confocal</topic><topic>Models, Chemical</topic><topic>Monomers</topic><topic>multidisciplinary</topic><topic>Nucleation</topic><topic>Phase separation</topic><topic>Prions - chemistry</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>SAXS</topic><topic>Scattering, Small Angle</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Size distribution</topic><topic>Small angle X ray scattering</topic><topic>Supramolecular assembly</topic><topic>Thermodynamics</topic><topic>Time</topic><topic>X-Ray Diffraction - methods</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Erik W.</creatorcontrib><creatorcontrib>Harmon, Tyler S.</creatorcontrib><creatorcontrib>Hopkins, Jesse B.</creatorcontrib><creatorcontrib>Chakravarthy, Srinivas</creatorcontrib><creatorcontrib>Incicco, J. Jeremías</creatorcontrib><creatorcontrib>Schuck, Peter</creatorcontrib><creatorcontrib>Soranno, Andrea</creatorcontrib><creatorcontrib>Mittag, Tanja</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Erik W.</au><au>Harmon, Tyler S.</au><au>Hopkins, Jesse B.</au><au>Chakravarthy, Srinivas</au><au>Incicco, J. Jeremías</au><au>Schuck, Peter</au><au>Soranno, Andrea</au><au>Mittag, Tanja</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-step nucleation process determines the kinetics of prion-like domain phase separation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-07-23</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>4513</spage><epage>4513</epage><pages>4513-4513</pages><artnum>4513</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Compartmentalization by liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the organization of biomolecules in space and time. Here, we combine rapid-mixing time-resolved small-angle X-ray scattering (SAXS) approaches to characterize the assembly kinetics of a prototypical prion-like domain with equilibrium techniques that characterize its phase boundaries and the size distribution of clusters prior to phase separation. We find two kinetic regimes on the micro- to millisecond timescale that are distinguished by the size distribution of clusters. At the nanoscale, small complexes are formed with low affinity. After initial unfavorable complex assembly, additional monomers are added with higher affinity. At the mesoscale, assembly resembles classical homogeneous nucleation. Careful multi-pronged characterization is required for the understanding of condensate assembly mechanisms and will promote understanding of how the kinetics of biological phase separation is encoded in biomolecules. The nucleation mechanisms of biological protein phase separation are poorly understood. Here, the authors perform time-resolved SAXS experiments with the low-complexity domain (LCD) of hnRNPA1 and uncover multiple kinetic regimes on the micro- to millisecond timescale. Initially, individual proteins collapse. Nucleation then occurs via two steps distinguished by their protein cluster size distributions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34301955</pmid><doi>10.1038/s41467-021-24727-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8554-8072</orcidid><orcidid>https://orcid.org/0000-0001-8394-7993</orcidid><orcidid>https://orcid.org/0000-0002-8938-5001</orcidid><orcidid>https://orcid.org/0000-0002-1827-3811</orcidid><orcidid>https://orcid.org/0000-0002-8859-6966</orcidid><orcidid>https://orcid.org/0000000185548072</orcidid><orcidid>https://orcid.org/0000000289385001</orcidid><orcidid>https://orcid.org/0000000183947993</orcidid><orcidid>https://orcid.org/0000000288596966</orcidid><orcidid>https://orcid.org/0000000218273811</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-07, Vol.12 (1), p.4513-4513, Article 4513
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3515d63866274f01b905879042d061a9
source Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/45/535/1261
631/57/2269
631/57/2272/1590
631/57/2272/2276
Affinity
Algorithms
Assembly
BASIC BIOLOGICAL SCIENCES
Biomolecules
Clusters
Complexity
Domains
Humanities and Social Sciences
Intrinsically disordered proteins
Kinetics
Liquid phases
Microscopy, Confocal
Models, Chemical
Monomers
multidisciplinary
Nucleation
Phase separation
Prions - chemistry
Protein Conformation
Proteins
SAXS
Scattering, Small Angle
Science
Science (multidisciplinary)
Size distribution
Small angle X ray scattering
Supramolecular assembly
Thermodynamics
Time
X-Ray Diffraction - methods
X-ray scattering
title A multi-step nucleation process determines the kinetics of prion-like domain phase separation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-step%20nucleation%20process%20determines%20the%20kinetics%20of%20prion-like%20domain%20phase%20separation&rft.jtitle=Nature%20communications&rft.au=Martin,%20Erik%20W.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2021-07-23&rft.volume=12&rft.issue=1&rft.spage=4513&rft.epage=4513&rft.pages=4513-4513&rft.artnum=4513&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-24727-z&rft_dat=%3Cproquest_doaj_%3E2554496460%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554496460&rft_id=info:pmid/34301955&rfr_iscdi=true