Loading…
A multi-step nucleation process determines the kinetics of prion-like domain phase separation
Compartmentalization by liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the organization of biomolecules in space and time. Here, we combine rapid-mixing time-resolved small-angle X-ray scattering (SAXS) approaches to characterize the assembly kinetics of a pro...
Saved in:
Published in: | Nature communications 2021-07, Vol.12 (1), p.4513-4513, Article 4513 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383 |
---|---|
cites | cdi_FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383 |
container_end_page | 4513 |
container_issue | 1 |
container_start_page | 4513 |
container_title | Nature communications |
container_volume | 12 |
creator | Martin, Erik W. Harmon, Tyler S. Hopkins, Jesse B. Chakravarthy, Srinivas Incicco, J. Jeremías Schuck, Peter Soranno, Andrea Mittag, Tanja |
description | Compartmentalization by liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the organization of biomolecules in space and time. Here, we combine rapid-mixing time-resolved small-angle X-ray scattering (SAXS) approaches to characterize the assembly kinetics of a prototypical prion-like domain with equilibrium techniques that characterize its phase boundaries and the size distribution of clusters prior to phase separation. We find two kinetic regimes on the micro- to millisecond timescale that are distinguished by the size distribution of clusters. At the nanoscale, small complexes are formed with low affinity. After initial unfavorable complex assembly, additional monomers are added with higher affinity. At the mesoscale, assembly resembles classical homogeneous nucleation. Careful multi-pronged characterization is required for the understanding of condensate assembly mechanisms and will promote understanding of how the kinetics of biological phase separation is encoded in biomolecules.
The nucleation mechanisms of biological protein phase separation are poorly understood. Here, the authors perform time-resolved SAXS experiments with the low-complexity domain (LCD) of hnRNPA1 and uncover multiple kinetic regimes on the micro- to millisecond timescale. Initially, individual proteins collapse. Nucleation then occurs via two steps distinguished by their protein cluster size distributions. |
doi_str_mv | 10.1038/s41467-021-24727-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3515d63866274f01b905879042d061a9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3515d63866274f01b905879042d061a9</doaj_id><sourcerecordid>2554496460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEolXpH2CBItiwCfgde4NUVTwqVWIDS2TZzs2Mp4k92E4l-utxJ6W0LPDGV_Z3zz22TtO8xOgdRlS-zwwz0XeI4I6wnvTdzZPmmCCGO9wT-vRBfdSc5rxDdVGFJWPPmyPKKMKK8-Pmx1k7L1PxXS6wb8PiJjDFx9DuU3SQcztAgTT7ALktW2ivalW8y20cK1LBbvJX0A5xNr42bU2GNsPepIPKi-bZaKYMp3f7SfP908dv51-6y6-fL87PLjsnKC0dsWQ0BkYqgEoFUowDUYNDqtbW2hEhw5yzmFHBheXOOomBUqIspnykkp40F6vuEM1OV1-zSb90NF4fDmLaaJOq7Qk05ZgPgkohSM9GhK1CXPYKMTIggY2qWh9Wrf1iZxgchJLM9Ej08U3wW72J11pSRHohqsDrVSDm4nV2voDbuhgCuKKxxEiy2ylv76ak-HOBXPTss4NpMgHikjXhnONqqKcVffMPuotLCvU_bynGlGACVYqslEsx5wTjvWOM9G1i9JoYXROjD4nRN7Xp1cO33rf8yUcF6ArkehU2kP7O_o_sbw4izBk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554496460</pqid></control><display><type>article</type><title>A multi-step nucleation process determines the kinetics of prion-like domain phase separation</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Martin, Erik W. ; Harmon, Tyler S. ; Hopkins, Jesse B. ; Chakravarthy, Srinivas ; Incicco, J. Jeremías ; Schuck, Peter ; Soranno, Andrea ; Mittag, Tanja</creator><creatorcontrib>Martin, Erik W. ; Harmon, Tyler S. ; Hopkins, Jesse B. ; Chakravarthy, Srinivas ; Incicco, J. Jeremías ; Schuck, Peter ; Soranno, Andrea ; Mittag, Tanja ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Compartmentalization by liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the organization of biomolecules in space and time. Here, we combine rapid-mixing time-resolved small-angle X-ray scattering (SAXS) approaches to characterize the assembly kinetics of a prototypical prion-like domain with equilibrium techniques that characterize its phase boundaries and the size distribution of clusters prior to phase separation. We find two kinetic regimes on the micro- to millisecond timescale that are distinguished by the size distribution of clusters. At the nanoscale, small complexes are formed with low affinity. After initial unfavorable complex assembly, additional monomers are added with higher affinity. At the mesoscale, assembly resembles classical homogeneous nucleation. Careful multi-pronged characterization is required for the understanding of condensate assembly mechanisms and will promote understanding of how the kinetics of biological phase separation is encoded in biomolecules.
The nucleation mechanisms of biological protein phase separation are poorly understood. Here, the authors perform time-resolved SAXS experiments with the low-complexity domain (LCD) of hnRNPA1 and uncover multiple kinetic regimes on the micro- to millisecond timescale. Initially, individual proteins collapse. Nucleation then occurs via two steps distinguished by their protein cluster size distributions.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-24727-z</identifier><identifier>PMID: 34301955</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/535/1261 ; 631/57/2269 ; 631/57/2272/1590 ; 631/57/2272/2276 ; Affinity ; Algorithms ; Assembly ; BASIC BIOLOGICAL SCIENCES ; Biomolecules ; Clusters ; Complexity ; Domains ; Humanities and Social Sciences ; Intrinsically disordered proteins ; Kinetics ; Liquid phases ; Microscopy, Confocal ; Models, Chemical ; Monomers ; multidisciplinary ; Nucleation ; Phase separation ; Prions - chemistry ; Protein Conformation ; Proteins ; SAXS ; Scattering, Small Angle ; Science ; Science (multidisciplinary) ; Size distribution ; Small angle X ray scattering ; Supramolecular assembly ; Thermodynamics ; Time ; X-Ray Diffraction - methods ; X-ray scattering</subject><ispartof>Nature communications, 2021-07, Vol.12 (1), p.4513-4513, Article 4513</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383</citedby><cites>FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383</cites><orcidid>0000-0001-8554-8072 ; 0000-0001-8394-7993 ; 0000-0002-8938-5001 ; 0000-0002-1827-3811 ; 0000-0002-8859-6966 ; 0000000185548072 ; 0000000289385001 ; 0000000183947993 ; 0000000288596966 ; 0000000218273811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554496460/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554496460?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34301955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1810849$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Erik W.</creatorcontrib><creatorcontrib>Harmon, Tyler S.</creatorcontrib><creatorcontrib>Hopkins, Jesse B.</creatorcontrib><creatorcontrib>Chakravarthy, Srinivas</creatorcontrib><creatorcontrib>Incicco, J. Jeremías</creatorcontrib><creatorcontrib>Schuck, Peter</creatorcontrib><creatorcontrib>Soranno, Andrea</creatorcontrib><creatorcontrib>Mittag, Tanja</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>A multi-step nucleation process determines the kinetics of prion-like domain phase separation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Compartmentalization by liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the organization of biomolecules in space and time. Here, we combine rapid-mixing time-resolved small-angle X-ray scattering (SAXS) approaches to characterize the assembly kinetics of a prototypical prion-like domain with equilibrium techniques that characterize its phase boundaries and the size distribution of clusters prior to phase separation. We find two kinetic regimes on the micro- to millisecond timescale that are distinguished by the size distribution of clusters. At the nanoscale, small complexes are formed with low affinity. After initial unfavorable complex assembly, additional monomers are added with higher affinity. At the mesoscale, assembly resembles classical homogeneous nucleation. Careful multi-pronged characterization is required for the understanding of condensate assembly mechanisms and will promote understanding of how the kinetics of biological phase separation is encoded in biomolecules.
The nucleation mechanisms of biological protein phase separation are poorly understood. Here, the authors perform time-resolved SAXS experiments with the low-complexity domain (LCD) of hnRNPA1 and uncover multiple kinetic regimes on the micro- to millisecond timescale. Initially, individual proteins collapse. Nucleation then occurs via two steps distinguished by their protein cluster size distributions.</description><subject>631/45/535/1261</subject><subject>631/57/2269</subject><subject>631/57/2272/1590</subject><subject>631/57/2272/2276</subject><subject>Affinity</subject><subject>Algorithms</subject><subject>Assembly</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biomolecules</subject><subject>Clusters</subject><subject>Complexity</subject><subject>Domains</subject><subject>Humanities and Social Sciences</subject><subject>Intrinsically disordered proteins</subject><subject>Kinetics</subject><subject>Liquid phases</subject><subject>Microscopy, Confocal</subject><subject>Models, Chemical</subject><subject>Monomers</subject><subject>multidisciplinary</subject><subject>Nucleation</subject><subject>Phase separation</subject><subject>Prions - chemistry</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>SAXS</subject><subject>Scattering, Small Angle</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Size distribution</subject><subject>Small angle X ray scattering</subject><subject>Supramolecular assembly</subject><subject>Thermodynamics</subject><subject>Time</subject><subject>X-Ray Diffraction - methods</subject><subject>X-ray scattering</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhSMEolXpH2CBItiwCfgde4NUVTwqVWIDS2TZzs2Mp4k92E4l-utxJ6W0LPDGV_Z3zz22TtO8xOgdRlS-zwwz0XeI4I6wnvTdzZPmmCCGO9wT-vRBfdSc5rxDdVGFJWPPmyPKKMKK8-Pmx1k7L1PxXS6wb8PiJjDFx9DuU3SQcztAgTT7ALktW2ivalW8y20cK1LBbvJX0A5xNr42bU2GNsPepIPKi-bZaKYMp3f7SfP908dv51-6y6-fL87PLjsnKC0dsWQ0BkYqgEoFUowDUYNDqtbW2hEhw5yzmFHBheXOOomBUqIspnykkp40F6vuEM1OV1-zSb90NF4fDmLaaJOq7Qk05ZgPgkohSM9GhK1CXPYKMTIggY2qWh9Wrf1iZxgchJLM9Ej08U3wW72J11pSRHohqsDrVSDm4nV2voDbuhgCuKKxxEiy2ylv76ak-HOBXPTss4NpMgHikjXhnONqqKcVffMPuotLCvU_bynGlGACVYqslEsx5wTjvWOM9G1i9JoYXROjD4nRN7Xp1cO33rf8yUcF6ArkehU2kP7O_o_sbw4izBk</recordid><startdate>20210723</startdate><enddate>20210723</enddate><creator>Martin, Erik W.</creator><creator>Harmon, Tyler S.</creator><creator>Hopkins, Jesse B.</creator><creator>Chakravarthy, Srinivas</creator><creator>Incicco, J. Jeremías</creator><creator>Schuck, Peter</creator><creator>Soranno, Andrea</creator><creator>Mittag, Tanja</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8554-8072</orcidid><orcidid>https://orcid.org/0000-0001-8394-7993</orcidid><orcidid>https://orcid.org/0000-0002-8938-5001</orcidid><orcidid>https://orcid.org/0000-0002-1827-3811</orcidid><orcidid>https://orcid.org/0000-0002-8859-6966</orcidid><orcidid>https://orcid.org/0000000185548072</orcidid><orcidid>https://orcid.org/0000000289385001</orcidid><orcidid>https://orcid.org/0000000183947993</orcidid><orcidid>https://orcid.org/0000000288596966</orcidid><orcidid>https://orcid.org/0000000218273811</orcidid></search><sort><creationdate>20210723</creationdate><title>A multi-step nucleation process determines the kinetics of prion-like domain phase separation</title><author>Martin, Erik W. ; Harmon, Tyler S. ; Hopkins, Jesse B. ; Chakravarthy, Srinivas ; Incicco, J. Jeremías ; Schuck, Peter ; Soranno, Andrea ; Mittag, Tanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/45/535/1261</topic><topic>631/57/2269</topic><topic>631/57/2272/1590</topic><topic>631/57/2272/2276</topic><topic>Affinity</topic><topic>Algorithms</topic><topic>Assembly</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biomolecules</topic><topic>Clusters</topic><topic>Complexity</topic><topic>Domains</topic><topic>Humanities and Social Sciences</topic><topic>Intrinsically disordered proteins</topic><topic>Kinetics</topic><topic>Liquid phases</topic><topic>Microscopy, Confocal</topic><topic>Models, Chemical</topic><topic>Monomers</topic><topic>multidisciplinary</topic><topic>Nucleation</topic><topic>Phase separation</topic><topic>Prions - chemistry</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>SAXS</topic><topic>Scattering, Small Angle</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Size distribution</topic><topic>Small angle X ray scattering</topic><topic>Supramolecular assembly</topic><topic>Thermodynamics</topic><topic>Time</topic><topic>X-Ray Diffraction - methods</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Erik W.</creatorcontrib><creatorcontrib>Harmon, Tyler S.</creatorcontrib><creatorcontrib>Hopkins, Jesse B.</creatorcontrib><creatorcontrib>Chakravarthy, Srinivas</creatorcontrib><creatorcontrib>Incicco, J. Jeremías</creatorcontrib><creatorcontrib>Schuck, Peter</creatorcontrib><creatorcontrib>Soranno, Andrea</creatorcontrib><creatorcontrib>Mittag, Tanja</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Erik W.</au><au>Harmon, Tyler S.</au><au>Hopkins, Jesse B.</au><au>Chakravarthy, Srinivas</au><au>Incicco, J. Jeremías</au><au>Schuck, Peter</au><au>Soranno, Andrea</au><au>Mittag, Tanja</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-step nucleation process determines the kinetics of prion-like domain phase separation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-07-23</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>4513</spage><epage>4513</epage><pages>4513-4513</pages><artnum>4513</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Compartmentalization by liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the organization of biomolecules in space and time. Here, we combine rapid-mixing time-resolved small-angle X-ray scattering (SAXS) approaches to characterize the assembly kinetics of a prototypical prion-like domain with equilibrium techniques that characterize its phase boundaries and the size distribution of clusters prior to phase separation. We find two kinetic regimes on the micro- to millisecond timescale that are distinguished by the size distribution of clusters. At the nanoscale, small complexes are formed with low affinity. After initial unfavorable complex assembly, additional monomers are added with higher affinity. At the mesoscale, assembly resembles classical homogeneous nucleation. Careful multi-pronged characterization is required for the understanding of condensate assembly mechanisms and will promote understanding of how the kinetics of biological phase separation is encoded in biomolecules.
The nucleation mechanisms of biological protein phase separation are poorly understood. Here, the authors perform time-resolved SAXS experiments with the low-complexity domain (LCD) of hnRNPA1 and uncover multiple kinetic regimes on the micro- to millisecond timescale. Initially, individual proteins collapse. Nucleation then occurs via two steps distinguished by their protein cluster size distributions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34301955</pmid><doi>10.1038/s41467-021-24727-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8554-8072</orcidid><orcidid>https://orcid.org/0000-0001-8394-7993</orcidid><orcidid>https://orcid.org/0000-0002-8938-5001</orcidid><orcidid>https://orcid.org/0000-0002-1827-3811</orcidid><orcidid>https://orcid.org/0000-0002-8859-6966</orcidid><orcidid>https://orcid.org/0000000185548072</orcidid><orcidid>https://orcid.org/0000000289385001</orcidid><orcidid>https://orcid.org/0000000183947993</orcidid><orcidid>https://orcid.org/0000000288596966</orcidid><orcidid>https://orcid.org/0000000218273811</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-07, Vol.12 (1), p.4513-4513, Article 4513 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3515d63866274f01b905879042d061a9 |
source | Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/45/535/1261 631/57/2269 631/57/2272/1590 631/57/2272/2276 Affinity Algorithms Assembly BASIC BIOLOGICAL SCIENCES Biomolecules Clusters Complexity Domains Humanities and Social Sciences Intrinsically disordered proteins Kinetics Liquid phases Microscopy, Confocal Models, Chemical Monomers multidisciplinary Nucleation Phase separation Prions - chemistry Protein Conformation Proteins SAXS Scattering, Small Angle Science Science (multidisciplinary) Size distribution Small angle X ray scattering Supramolecular assembly Thermodynamics Time X-Ray Diffraction - methods X-ray scattering |
title | A multi-step nucleation process determines the kinetics of prion-like domain phase separation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-step%20nucleation%20process%20determines%20the%20kinetics%20of%20prion-like%20domain%20phase%20separation&rft.jtitle=Nature%20communications&rft.au=Martin,%20Erik%20W.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2021-07-23&rft.volume=12&rft.issue=1&rft.spage=4513&rft.epage=4513&rft.pages=4513-4513&rft.artnum=4513&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-24727-z&rft_dat=%3Cproquest_doaj_%3E2554496460%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-2b2faaef36e389e86fd29dc099e8bbbf00a4ccb143656b5cbc81e3329b135f383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554496460&rft_id=info:pmid/34301955&rfr_iscdi=true |