Loading…
Shake Table Testing of Standard Cold-Formed Steel Storage Rack
Full-scale shake table investigations are strongly required to understand the actual performance of storage racks and to improve the rack design guidelines. This paper presents the results of full-scale shake table tests on New Zealand standard storage rack frames with two-bay and two-level to deter...
Saved in:
Published in: | Applied sciences 2021-02, Vol.11 (4), p.1821 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Full-scale shake table investigations are strongly required to understand the actual performance of storage racks and to improve the rack design guidelines. This paper presents the results of full-scale shake table tests on New Zealand standard storage rack frames with two-bay and two-level to determine the dynamic characteristics of a standard rack structure and to measure the damping of the system. The experimental program was conducted in three phases. First, the identification parameters including the natural frequency and damping of the system were determined through a series of preliminary tests. Then, shake table tests were performed to capture the inelastic response of rack frames under low to medium intensities of El-Centro ground motion. Finally, the shake-table tests were repeated with scaling down the time domain and broader ranges of ground motion intensities to consider the performance of taller rack systems. In addition, a comprehensive discussion on the damping of the system is also provided based on the test results. The performance of the rack frame is described through an extensive set of measurements, including rack displacement, pallet sliding, the acceleration of a concrete block and rack frame and the damping of the system in the down-aisle direction. The results indicate that the standard rack frames are able to endure large inelastic deformations without loss of stability. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11041821 |