Comparison of Performance Measurements of Photovoltaic Modules during Winter Months in Taxila, Pakistan

This paper presents the comparative performance evaluation of three commercially available photovoltaic modules (monocrystalline, polycrystalline, and single junction amorphous silicon) in Taxila, Pakistan. The experimentation was carried out at outdoor conditions for winter months. Power output, mo...

Full description

Saved in:
Bibliographic Details
Published in:International journal of photoenergy 2014-01, Vol.2014 (2014), p.1-8
Main Authors: Ali, Muzaffar, Khalil, Shahid, Ali, Hafiz Muhammad, Bashir, Muhammad Anser, Siddiqui, Aysha Maryam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the comparative performance evaluation of three commercially available photovoltaic modules (monocrystalline, polycrystalline, and single junction amorphous silicon) in Taxila, Pakistan. The experimentation was carried out at outdoor conditions for winter months. Power output, module efficiency, and performance ratio were calculated for each module and the effect of module temperature and solar irradiance on these parameters was investigated. Module parameters showed strong dependence on the solar irradiance and module temperature. Monocrystalline and polycrystalline modules showed better performance in high irradiance condition whereas it decreased suddenly with decrease in irradiance. Amorphous solar module also showed good performance in low irradiance due to its better light absorbing characteristics and thus showed higher average performance ratio. Monocrystalline photovoltaic module showed higher monthly average module efficiency and was found to be more efficient at this site. Module efficiency and performance ratio showed a decreasing trend with increase of irradiance and photovoltaic module back surface temperature.
ISSN:1110-662X
1687-529X
DOI:10.1155/2014/898414