Loading…
Towards Recommendation in Internet of Things: An Uncertainty Perspective
As a bridge between the physical and cyber world, the Internet of Things (IoT) senses and collects a large amount of user data through different types of devices connected to it. As a general information filtering technology, the recommender systems can help to associate information with each other...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.12057-12068 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3 |
container_end_page | 12068 |
container_issue | |
container_start_page | 12057 |
container_title | IEEE access |
container_volume | 8 |
creator | Liu, Xiangyong Wang, Guojun Bhuiyan, Md Zakirul Alam Shan, Meijing |
description | As a bridge between the physical and cyber world, the Internet of Things (IoT) senses and collects a large amount of user data through different types of devices connected to it. As a general information filtering technology, the recommender systems can help to associate information with each other in the IoT and to recommend personalized services for users. However, in practical applications, the collected data is uncertain due to noise, sensor errors, transmission errors, etc., which in turn affects system performance. In order to solve the data uncertainty problem in the IoT-based recommender systems, we propose a new recommender framework with item dithering. In this framework, the list of recommendations generated by the recommender algorithm is stored in a newly opened storage space for the entire session of the interaction between the user and the system. When the user interacts with the system, the list is pushed to the user after being shaken. Based on the proposed framework, we designed IDither, an item-based dithering and recommendation algorithm to shake out irrelevant items through predetermined indicators, thereby retaining the items required by the user and recommending them to the user. Experiment evaluations on real datasets show that IDither is an effective solution for handling uncertainty in the IoT-based recommender systems. We also found that IDither can be viewed as a list updating tool to increase diversity and novelty. |
doi_str_mv | 10.1109/ACCESS.2020.2966219 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_35351c13907a4ef6b9acae1c09773e51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8957560</ieee_id><doaj_id>oai_doaj_org_article_35351c13907a4ef6b9acae1c09773e51</doaj_id><sourcerecordid>2454764872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3</originalsourceid><addsrcrecordid>eNpNUcFKAzEQXURBqf0CLwuetyabZJN4K0u1BUHReg5pdlZTbFKTVOnfm7pSHAgzDO-9mckriiuMJhgjeTNt29nLy6RGNZrUsmlqLE-Kixo3siKMNKf_6vNiHOMa5RC5xfhFMV_6bx26WD6D8ZsNuE4n611pXblwCYKDVPq-XL5b9xZvy6krX52BkLR1aV8-QYhbMMl-wWVx1uuPCOO_PCpe72bLdl49PN4v2ulDZSgSqZKEgtSMacgPA2-MJIwSKpAABoYbTDKCsg5hLQjWPVqtOgNC8F4wiQ0ZFYtBt_N6rbbBbnTYK6-t-m348KZ0SNZ8gMoXM5wFJeKaQt-spDYasEGScwIMZ63rQWsb_OcOYlJrvwsur69qyihvqOB1RpEBZYKPMUB_nIqROjigBgfUwQH150BmXQ0sCwBHhsifzhpEfgBmtICx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454764872</pqid></control><display><type>article</type><title>Towards Recommendation in Internet of Things: An Uncertainty Perspective</title><source>IEEE Xplore Open Access Journals</source><creator>Liu, Xiangyong ; Wang, Guojun ; Bhuiyan, Md Zakirul Alam ; Shan, Meijing</creator><creatorcontrib>Liu, Xiangyong ; Wang, Guojun ; Bhuiyan, Md Zakirul Alam ; Shan, Meijing</creatorcontrib><description>As a bridge between the physical and cyber world, the Internet of Things (IoT) senses and collects a large amount of user data through different types of devices connected to it. As a general information filtering technology, the recommender systems can help to associate information with each other in the IoT and to recommend personalized services for users. However, in practical applications, the collected data is uncertain due to noise, sensor errors, transmission errors, etc., which in turn affects system performance. In order to solve the data uncertainty problem in the IoT-based recommender systems, we propose a new recommender framework with item dithering. In this framework, the list of recommendations generated by the recommender algorithm is stored in a newly opened storage space for the entire session of the interaction between the user and the system. When the user interacts with the system, the list is pushed to the user after being shaken. Based on the proposed framework, we designed IDither, an item-based dithering and recommendation algorithm to shake out irrelevant items through predetermined indicators, thereby retaining the items required by the user and recommending them to the user. Experiment evaluations on real datasets show that IDither is an effective solution for handling uncertainty in the IoT-based recommender systems. We also found that IDither can be viewed as a list updating tool to increase diversity and novelty.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2966219</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Collaboration ; Computational modeling ; Data collection ; Data models ; data uncertainty ; Dithering ; Internet of Things ; Recommender systems ; System effectiveness ; Uncertainty</subject><ispartof>IEEE access, 2020, Vol.8, p.12057-12068</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3</citedby><cites>FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3</cites><orcidid>0000-0001-7861-1395 ; 0000-0001-9875-4182 ; 0000-0001-7343-5521 ; 0000-0002-9513-9990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8957560$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Xiangyong</creatorcontrib><creatorcontrib>Wang, Guojun</creatorcontrib><creatorcontrib>Bhuiyan, Md Zakirul Alam</creatorcontrib><creatorcontrib>Shan, Meijing</creatorcontrib><title>Towards Recommendation in Internet of Things: An Uncertainty Perspective</title><title>IEEE access</title><addtitle>Access</addtitle><description>As a bridge between the physical and cyber world, the Internet of Things (IoT) senses and collects a large amount of user data through different types of devices connected to it. As a general information filtering technology, the recommender systems can help to associate information with each other in the IoT and to recommend personalized services for users. However, in practical applications, the collected data is uncertain due to noise, sensor errors, transmission errors, etc., which in turn affects system performance. In order to solve the data uncertainty problem in the IoT-based recommender systems, we propose a new recommender framework with item dithering. In this framework, the list of recommendations generated by the recommender algorithm is stored in a newly opened storage space for the entire session of the interaction between the user and the system. When the user interacts with the system, the list is pushed to the user after being shaken. Based on the proposed framework, we designed IDither, an item-based dithering and recommendation algorithm to shake out irrelevant items through predetermined indicators, thereby retaining the items required by the user and recommending them to the user. Experiment evaluations on real datasets show that IDither is an effective solution for handling uncertainty in the IoT-based recommender systems. We also found that IDither can be viewed as a list updating tool to increase diversity and novelty.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Computational modeling</subject><subject>Data collection</subject><subject>Data models</subject><subject>data uncertainty</subject><subject>Dithering</subject><subject>Internet of Things</subject><subject>Recommender systems</subject><subject>System effectiveness</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFKAzEQXURBqf0CLwuetyabZJN4K0u1BUHReg5pdlZTbFKTVOnfm7pSHAgzDO-9mckriiuMJhgjeTNt29nLy6RGNZrUsmlqLE-Kixo3siKMNKf_6vNiHOMa5RC5xfhFMV_6bx26WD6D8ZsNuE4n611pXblwCYKDVPq-XL5b9xZvy6krX52BkLR1aV8-QYhbMMl-wWVx1uuPCOO_PCpe72bLdl49PN4v2ulDZSgSqZKEgtSMacgPA2-MJIwSKpAABoYbTDKCsg5hLQjWPVqtOgNC8F4wiQ0ZFYtBt_N6rbbBbnTYK6-t-m348KZ0SNZ8gMoXM5wFJeKaQt-spDYasEGScwIMZ63rQWsb_OcOYlJrvwsur69qyihvqOB1RpEBZYKPMUB_nIqROjigBgfUwQH150BmXQ0sCwBHhsifzhpEfgBmtICx</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Xiangyong</creator><creator>Wang, Guojun</creator><creator>Bhuiyan, Md Zakirul Alam</creator><creator>Shan, Meijing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7861-1395</orcidid><orcidid>https://orcid.org/0000-0001-9875-4182</orcidid><orcidid>https://orcid.org/0000-0001-7343-5521</orcidid><orcidid>https://orcid.org/0000-0002-9513-9990</orcidid></search><sort><creationdate>2020</creationdate><title>Towards Recommendation in Internet of Things: An Uncertainty Perspective</title><author>Liu, Xiangyong ; Wang, Guojun ; Bhuiyan, Md Zakirul Alam ; Shan, Meijing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Computational modeling</topic><topic>Data collection</topic><topic>Data models</topic><topic>data uncertainty</topic><topic>Dithering</topic><topic>Internet of Things</topic><topic>Recommender systems</topic><topic>System effectiveness</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiangyong</creatorcontrib><creatorcontrib>Wang, Guojun</creatorcontrib><creatorcontrib>Bhuiyan, Md Zakirul Alam</creatorcontrib><creatorcontrib>Shan, Meijing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiangyong</au><au>Wang, Guojun</au><au>Bhuiyan, Md Zakirul Alam</au><au>Shan, Meijing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Recommendation in Internet of Things: An Uncertainty Perspective</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>12057</spage><epage>12068</epage><pages>12057-12068</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As a bridge between the physical and cyber world, the Internet of Things (IoT) senses and collects a large amount of user data through different types of devices connected to it. As a general information filtering technology, the recommender systems can help to associate information with each other in the IoT and to recommend personalized services for users. However, in practical applications, the collected data is uncertain due to noise, sensor errors, transmission errors, etc., which in turn affects system performance. In order to solve the data uncertainty problem in the IoT-based recommender systems, we propose a new recommender framework with item dithering. In this framework, the list of recommendations generated by the recommender algorithm is stored in a newly opened storage space for the entire session of the interaction between the user and the system. When the user interacts with the system, the list is pushed to the user after being shaken. Based on the proposed framework, we designed IDither, an item-based dithering and recommendation algorithm to shake out irrelevant items through predetermined indicators, thereby retaining the items required by the user and recommending them to the user. Experiment evaluations on real datasets show that IDither is an effective solution for handling uncertainty in the IoT-based recommender systems. We also found that IDither can be viewed as a list updating tool to increase diversity and novelty.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2966219</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7861-1395</orcidid><orcidid>https://orcid.org/0000-0001-9875-4182</orcidid><orcidid>https://orcid.org/0000-0001-7343-5521</orcidid><orcidid>https://orcid.org/0000-0002-9513-9990</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.12057-12068 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_35351c13907a4ef6b9acae1c09773e51 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Collaboration Computational modeling Data collection Data models data uncertainty Dithering Internet of Things Recommender systems System effectiveness Uncertainty |
title | Towards Recommendation in Internet of Things: An Uncertainty Perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Recommendation%20in%20Internet%20of%20Things:%20An%20Uncertainty%20Perspective&rft.jtitle=IEEE%20access&rft.au=Liu,%20Xiangyong&rft.date=2020&rft.volume=8&rft.spage=12057&rft.epage=12068&rft.pages=12057-12068&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2966219&rft_dat=%3Cproquest_doaj_%3E2454764872%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454764872&rft_id=info:pmid/&rft_ieee_id=8957560&rfr_iscdi=true |