Loading…

Towards Recommendation in Internet of Things: An Uncertainty Perspective

As a bridge between the physical and cyber world, the Internet of Things (IoT) senses and collects a large amount of user data through different types of devices connected to it. As a general information filtering technology, the recommender systems can help to associate information with each other...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.12057-12068
Main Authors: Liu, Xiangyong, Wang, Guojun, Bhuiyan, Md Zakirul Alam, Shan, Meijing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3
cites cdi_FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3
container_end_page 12068
container_issue
container_start_page 12057
container_title IEEE access
container_volume 8
creator Liu, Xiangyong
Wang, Guojun
Bhuiyan, Md Zakirul Alam
Shan, Meijing
description As a bridge between the physical and cyber world, the Internet of Things (IoT) senses and collects a large amount of user data through different types of devices connected to it. As a general information filtering technology, the recommender systems can help to associate information with each other in the IoT and to recommend personalized services for users. However, in practical applications, the collected data is uncertain due to noise, sensor errors, transmission errors, etc., which in turn affects system performance. In order to solve the data uncertainty problem in the IoT-based recommender systems, we propose a new recommender framework with item dithering. In this framework, the list of recommendations generated by the recommender algorithm is stored in a newly opened storage space for the entire session of the interaction between the user and the system. When the user interacts with the system, the list is pushed to the user after being shaken. Based on the proposed framework, we designed IDither, an item-based dithering and recommendation algorithm to shake out irrelevant items through predetermined indicators, thereby retaining the items required by the user and recommending them to the user. Experiment evaluations on real datasets show that IDither is an effective solution for handling uncertainty in the IoT-based recommender systems. We also found that IDither can be viewed as a list updating tool to increase diversity and novelty.
doi_str_mv 10.1109/ACCESS.2020.2966219
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_35351c13907a4ef6b9acae1c09773e51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8957560</ieee_id><doaj_id>oai_doaj_org_article_35351c13907a4ef6b9acae1c09773e51</doaj_id><sourcerecordid>2454764872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3</originalsourceid><addsrcrecordid>eNpNUcFKAzEQXURBqf0CLwuetyabZJN4K0u1BUHReg5pdlZTbFKTVOnfm7pSHAgzDO-9mckriiuMJhgjeTNt29nLy6RGNZrUsmlqLE-Kixo3siKMNKf_6vNiHOMa5RC5xfhFMV_6bx26WD6D8ZsNuE4n611pXblwCYKDVPq-XL5b9xZvy6krX52BkLR1aV8-QYhbMMl-wWVx1uuPCOO_PCpe72bLdl49PN4v2ulDZSgSqZKEgtSMacgPA2-MJIwSKpAABoYbTDKCsg5hLQjWPVqtOgNC8F4wiQ0ZFYtBt_N6rbbBbnTYK6-t-m348KZ0SNZ8gMoXM5wFJeKaQt-spDYasEGScwIMZ63rQWsb_OcOYlJrvwsur69qyihvqOB1RpEBZYKPMUB_nIqROjigBgfUwQH150BmXQ0sCwBHhsifzhpEfgBmtICx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454764872</pqid></control><display><type>article</type><title>Towards Recommendation in Internet of Things: An Uncertainty Perspective</title><source>IEEE Xplore Open Access Journals</source><creator>Liu, Xiangyong ; Wang, Guojun ; Bhuiyan, Md Zakirul Alam ; Shan, Meijing</creator><creatorcontrib>Liu, Xiangyong ; Wang, Guojun ; Bhuiyan, Md Zakirul Alam ; Shan, Meijing</creatorcontrib><description>As a bridge between the physical and cyber world, the Internet of Things (IoT) senses and collects a large amount of user data through different types of devices connected to it. As a general information filtering technology, the recommender systems can help to associate information with each other in the IoT and to recommend personalized services for users. However, in practical applications, the collected data is uncertain due to noise, sensor errors, transmission errors, etc., which in turn affects system performance. In order to solve the data uncertainty problem in the IoT-based recommender systems, we propose a new recommender framework with item dithering. In this framework, the list of recommendations generated by the recommender algorithm is stored in a newly opened storage space for the entire session of the interaction between the user and the system. When the user interacts with the system, the list is pushed to the user after being shaken. Based on the proposed framework, we designed IDither, an item-based dithering and recommendation algorithm to shake out irrelevant items through predetermined indicators, thereby retaining the items required by the user and recommending them to the user. Experiment evaluations on real datasets show that IDither is an effective solution for handling uncertainty in the IoT-based recommender systems. We also found that IDither can be viewed as a list updating tool to increase diversity and novelty.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2966219</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Collaboration ; Computational modeling ; Data collection ; Data models ; data uncertainty ; Dithering ; Internet of Things ; Recommender systems ; System effectiveness ; Uncertainty</subject><ispartof>IEEE access, 2020, Vol.8, p.12057-12068</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3</citedby><cites>FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3</cites><orcidid>0000-0001-7861-1395 ; 0000-0001-9875-4182 ; 0000-0001-7343-5521 ; 0000-0002-9513-9990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8957560$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Xiangyong</creatorcontrib><creatorcontrib>Wang, Guojun</creatorcontrib><creatorcontrib>Bhuiyan, Md Zakirul Alam</creatorcontrib><creatorcontrib>Shan, Meijing</creatorcontrib><title>Towards Recommendation in Internet of Things: An Uncertainty Perspective</title><title>IEEE access</title><addtitle>Access</addtitle><description>As a bridge between the physical and cyber world, the Internet of Things (IoT) senses and collects a large amount of user data through different types of devices connected to it. As a general information filtering technology, the recommender systems can help to associate information with each other in the IoT and to recommend personalized services for users. However, in practical applications, the collected data is uncertain due to noise, sensor errors, transmission errors, etc., which in turn affects system performance. In order to solve the data uncertainty problem in the IoT-based recommender systems, we propose a new recommender framework with item dithering. In this framework, the list of recommendations generated by the recommender algorithm is stored in a newly opened storage space for the entire session of the interaction between the user and the system. When the user interacts with the system, the list is pushed to the user after being shaken. Based on the proposed framework, we designed IDither, an item-based dithering and recommendation algorithm to shake out irrelevant items through predetermined indicators, thereby retaining the items required by the user and recommending them to the user. Experiment evaluations on real datasets show that IDither is an effective solution for handling uncertainty in the IoT-based recommender systems. We also found that IDither can be viewed as a list updating tool to increase diversity and novelty.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Computational modeling</subject><subject>Data collection</subject><subject>Data models</subject><subject>data uncertainty</subject><subject>Dithering</subject><subject>Internet of Things</subject><subject>Recommender systems</subject><subject>System effectiveness</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFKAzEQXURBqf0CLwuetyabZJN4K0u1BUHReg5pdlZTbFKTVOnfm7pSHAgzDO-9mckriiuMJhgjeTNt29nLy6RGNZrUsmlqLE-Kixo3siKMNKf_6vNiHOMa5RC5xfhFMV_6bx26WD6D8ZsNuE4n611pXblwCYKDVPq-XL5b9xZvy6krX52BkLR1aV8-QYhbMMl-wWVx1uuPCOO_PCpe72bLdl49PN4v2ulDZSgSqZKEgtSMacgPA2-MJIwSKpAABoYbTDKCsg5hLQjWPVqtOgNC8F4wiQ0ZFYtBt_N6rbbBbnTYK6-t-m348KZ0SNZ8gMoXM5wFJeKaQt-spDYasEGScwIMZ63rQWsb_OcOYlJrvwsur69qyihvqOB1RpEBZYKPMUB_nIqROjigBgfUwQH150BmXQ0sCwBHhsifzhpEfgBmtICx</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Xiangyong</creator><creator>Wang, Guojun</creator><creator>Bhuiyan, Md Zakirul Alam</creator><creator>Shan, Meijing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7861-1395</orcidid><orcidid>https://orcid.org/0000-0001-9875-4182</orcidid><orcidid>https://orcid.org/0000-0001-7343-5521</orcidid><orcidid>https://orcid.org/0000-0002-9513-9990</orcidid></search><sort><creationdate>2020</creationdate><title>Towards Recommendation in Internet of Things: An Uncertainty Perspective</title><author>Liu, Xiangyong ; Wang, Guojun ; Bhuiyan, Md Zakirul Alam ; Shan, Meijing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Computational modeling</topic><topic>Data collection</topic><topic>Data models</topic><topic>data uncertainty</topic><topic>Dithering</topic><topic>Internet of Things</topic><topic>Recommender systems</topic><topic>System effectiveness</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiangyong</creatorcontrib><creatorcontrib>Wang, Guojun</creatorcontrib><creatorcontrib>Bhuiyan, Md Zakirul Alam</creatorcontrib><creatorcontrib>Shan, Meijing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiangyong</au><au>Wang, Guojun</au><au>Bhuiyan, Md Zakirul Alam</au><au>Shan, Meijing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Recommendation in Internet of Things: An Uncertainty Perspective</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>12057</spage><epage>12068</epage><pages>12057-12068</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As a bridge between the physical and cyber world, the Internet of Things (IoT) senses and collects a large amount of user data through different types of devices connected to it. As a general information filtering technology, the recommender systems can help to associate information with each other in the IoT and to recommend personalized services for users. However, in practical applications, the collected data is uncertain due to noise, sensor errors, transmission errors, etc., which in turn affects system performance. In order to solve the data uncertainty problem in the IoT-based recommender systems, we propose a new recommender framework with item dithering. In this framework, the list of recommendations generated by the recommender algorithm is stored in a newly opened storage space for the entire session of the interaction between the user and the system. When the user interacts with the system, the list is pushed to the user after being shaken. Based on the proposed framework, we designed IDither, an item-based dithering and recommendation algorithm to shake out irrelevant items through predetermined indicators, thereby retaining the items required by the user and recommending them to the user. Experiment evaluations on real datasets show that IDither is an effective solution for handling uncertainty in the IoT-based recommender systems. We also found that IDither can be viewed as a list updating tool to increase diversity and novelty.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2966219</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7861-1395</orcidid><orcidid>https://orcid.org/0000-0001-9875-4182</orcidid><orcidid>https://orcid.org/0000-0001-7343-5521</orcidid><orcidid>https://orcid.org/0000-0002-9513-9990</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.12057-12068
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_35351c13907a4ef6b9acae1c09773e51
source IEEE Xplore Open Access Journals
subjects Algorithms
Collaboration
Computational modeling
Data collection
Data models
data uncertainty
Dithering
Internet of Things
Recommender systems
System effectiveness
Uncertainty
title Towards Recommendation in Internet of Things: An Uncertainty Perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Recommendation%20in%20Internet%20of%20Things:%20An%20Uncertainty%20Perspective&rft.jtitle=IEEE%20access&rft.au=Liu,%20Xiangyong&rft.date=2020&rft.volume=8&rft.spage=12057&rft.epage=12068&rft.pages=12057-12068&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2966219&rft_dat=%3Cproquest_doaj_%3E2454764872%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-934e9a55ae55a1e76c935434808e5ec7c1334e45d01a831af0bbdce887f8591c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454764872&rft_id=info:pmid/&rft_ieee_id=8957560&rfr_iscdi=true