Loading…

Ranks with Respect to a Projective Variety and a Cost-Function

Let X⊂Pr be an integral and non-degenerate variety. A “cost-function” (for the Zariski topology, the semialgebraic one, or the Euclidean one) is a semicontinuous function w:=[1,+∞)∪+∞ such that w(a)=1 for a non-empty open subset of X. For any q∈Pr, the rank rX,w(q) of q with respect to (X,w) is the...

Full description

Saved in:
Bibliographic Details
Published in:AppliedMath 2022-09, Vol.2 (3), p.457-465
Main Author: Ballico, Edoardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c238t-10668b8c1c37dea5aa73cd7a097c38d5ffa377d1314d3726e0f25cc2205220a83
container_end_page 465
container_issue 3
container_start_page 457
container_title AppliedMath
container_volume 2
creator Ballico, Edoardo
description Let X⊂Pr be an integral and non-degenerate variety. A “cost-function” (for the Zariski topology, the semialgebraic one, or the Euclidean one) is a semicontinuous function w:=[1,+∞)∪+∞ such that w(a)=1 for a non-empty open subset of X. For any q∈Pr, the rank rX,w(q) of q with respect to (X,w) is the minimum of all ∑a∈Sw(a), where S is a finite subset of X spanning q. We have rX,w(q)
doi_str_mv 10.3390/appliedmath2030026
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_35365dd67a604a41b5fa62d6be2d1548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_35365dd67a604a41b5fa62d6be2d1548</doaj_id><sourcerecordid>oai_doaj_org_article_35365dd67a604a41b5fa62d6be2d1548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-10668b8c1c37dea5aa73cd7a097c38d5ffa377d1314d3726e0f25cc2205220a83</originalsourceid><addsrcrecordid>eNplkEFLAzEQhYMoWGr_gKf8gdUks0l2L4IUq4WCUtRrmCZZu7XdLElU-u9drYjgYXgz8x7f4RFyztkFQM0use-3rXc7zGvBgDGhjshIKA1FXbP6-M9-SiYpbdgQqaQGXY3I1RK710Q_2rymS596bzPNgSJ9iGEzHO27p88YW5_3FDs3GNOQcjF76wYvdGfkpMFt8pMfHZOn2c3j9K5Y3N_Op9eLwgqocsGZUtWqstyCdh4logbrNLJaW6icbBoErR0HXjrQQnnWCGmtEEwOgxWMyfzAdQE3po_tDuPeBGzN9yPEF4Mxt3brDUhQ0jmlUbESS76SDSrh1MoLx2X5xRIHlo0hpeibXx5n5qtQ879Q-AQWhGqa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ranks with Respect to a Projective Variety and a Cost-Function</title><source>DOAJ Directory of Open Access Journals</source><creator>Ballico, Edoardo</creator><creatorcontrib>Ballico, Edoardo</creatorcontrib><description>Let X⊂Pr be an integral and non-degenerate variety. A “cost-function” (for the Zariski topology, the semialgebraic one, or the Euclidean one) is a semicontinuous function w:=[1,+∞)∪+∞ such that w(a)=1 for a non-empty open subset of X. For any q∈Pr, the rank rX,w(q) of q with respect to (X,w) is the minimum of all ∑a∈Sw(a), where S is a finite subset of X spanning q. We have rX,w(q)&lt;+∞ for all q. We discuss this definition and classify extremal cases of pairs (X,q). We give upper bounds for all rX,w(q) (twice the generic rank) not depending on w. This notion is the generalization of the case in which the cost-function w is the constant function 1. In this case, the rank is a well-studied notion that covers the tensor rank of tensors of arbitrary formats (PARAFAC or CP decomposition) and the additive decomposition of forms. We also adapt to cost-functions the rank 1 decomposition of real tensors in which we allow pairs of complex conjugate rank 1 tensors.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath2030026</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>real rank ; semialgebraic function ; tensor rank ; typical rank ; X-rank</subject><ispartof>AppliedMath, 2022-09, Vol.2 (3), p.457-465</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-10668b8c1c37dea5aa73cd7a097c38d5ffa377d1314d3726e0f25cc2205220a83</cites><orcidid>0000-0002-1432-7413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Ballico, Edoardo</creatorcontrib><title>Ranks with Respect to a Projective Variety and a Cost-Function</title><title>AppliedMath</title><description>Let X⊂Pr be an integral and non-degenerate variety. A “cost-function” (for the Zariski topology, the semialgebraic one, or the Euclidean one) is a semicontinuous function w:=[1,+∞)∪+∞ such that w(a)=1 for a non-empty open subset of X. For any q∈Pr, the rank rX,w(q) of q with respect to (X,w) is the minimum of all ∑a∈Sw(a), where S is a finite subset of X spanning q. We have rX,w(q)&lt;+∞ for all q. We discuss this definition and classify extremal cases of pairs (X,q). We give upper bounds for all rX,w(q) (twice the generic rank) not depending on w. This notion is the generalization of the case in which the cost-function w is the constant function 1. In this case, the rank is a well-studied notion that covers the tensor rank of tensors of arbitrary formats (PARAFAC or CP decomposition) and the additive decomposition of forms. We also adapt to cost-functions the rank 1 decomposition of real tensors in which we allow pairs of complex conjugate rank 1 tensors.</description><subject>real rank</subject><subject>semialgebraic function</subject><subject>tensor rank</subject><subject>typical rank</subject><subject>X-rank</subject><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkEFLAzEQhYMoWGr_gKf8gdUks0l2L4IUq4WCUtRrmCZZu7XdLElU-u9drYjgYXgz8x7f4RFyztkFQM0use-3rXc7zGvBgDGhjshIKA1FXbP6-M9-SiYpbdgQqaQGXY3I1RK710Q_2rymS596bzPNgSJ9iGEzHO27p88YW5_3FDs3GNOQcjF76wYvdGfkpMFt8pMfHZOn2c3j9K5Y3N_Op9eLwgqocsGZUtWqstyCdh4logbrNLJaW6icbBoErR0HXjrQQnnWCGmtEEwOgxWMyfzAdQE3po_tDuPeBGzN9yPEF4Mxt3brDUhQ0jmlUbESS76SDSrh1MoLx2X5xRIHlo0hpeibXx5n5qtQ879Q-AQWhGqa</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ballico, Edoardo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1432-7413</orcidid></search><sort><creationdate>20220901</creationdate><title>Ranks with Respect to a Projective Variety and a Cost-Function</title><author>Ballico, Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-10668b8c1c37dea5aa73cd7a097c38d5ffa377d1314d3726e0f25cc2205220a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>real rank</topic><topic>semialgebraic function</topic><topic>tensor rank</topic><topic>typical rank</topic><topic>X-rank</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballico, Edoardo</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballico, Edoardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ranks with Respect to a Projective Variety and a Cost-Function</atitle><jtitle>AppliedMath</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>2</volume><issue>3</issue><spage>457</spage><epage>465</epage><pages>457-465</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>Let X⊂Pr be an integral and non-degenerate variety. A “cost-function” (for the Zariski topology, the semialgebraic one, or the Euclidean one) is a semicontinuous function w:=[1,+∞)∪+∞ such that w(a)=1 for a non-empty open subset of X. For any q∈Pr, the rank rX,w(q) of q with respect to (X,w) is the minimum of all ∑a∈Sw(a), where S is a finite subset of X spanning q. We have rX,w(q)&lt;+∞ for all q. We discuss this definition and classify extremal cases of pairs (X,q). We give upper bounds for all rX,w(q) (twice the generic rank) not depending on w. This notion is the generalization of the case in which the cost-function w is the constant function 1. In this case, the rank is a well-studied notion that covers the tensor rank of tensors of arbitrary formats (PARAFAC or CP decomposition) and the additive decomposition of forms. We also adapt to cost-functions the rank 1 decomposition of real tensors in which we allow pairs of complex conjugate rank 1 tensors.</abstract><pub>MDPI AG</pub><doi>10.3390/appliedmath2030026</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1432-7413</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-9909
ispartof AppliedMath, 2022-09, Vol.2 (3), p.457-465
issn 2673-9909
2673-9909
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_35365dd67a604a41b5fa62d6be2d1548
source DOAJ Directory of Open Access Journals
subjects real rank
semialgebraic function
tensor rank
typical rank
X-rank
title Ranks with Respect to a Projective Variety and a Cost-Function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ranks%20with%20Respect%20to%20a%20Projective%20Variety%20and%20a%20Cost-Function&rft.jtitle=AppliedMath&rft.au=Ballico,%20Edoardo&rft.date=2022-09-01&rft.volume=2&rft.issue=3&rft.spage=457&rft.epage=465&rft.pages=457-465&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath2030026&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_35365dd67a604a41b5fa62d6be2d1548%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-10668b8c1c37dea5aa73cd7a097c38d5ffa377d1314d3726e0f25cc2205220a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true