Loading…
Ranks with Respect to a Projective Variety and a Cost-Function
Let X⊂Pr be an integral and non-degenerate variety. A “cost-function” (for the Zariski topology, the semialgebraic one, or the Euclidean one) is a semicontinuous function w:=[1,+∞)∪+∞ such that w(a)=1 for a non-empty open subset of X. For any q∈Pr, the rank rX,w(q) of q with respect to (X,w) is the...
Saved in:
Published in: | AppliedMath 2022-09, Vol.2 (3), p.457-465 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c238t-10668b8c1c37dea5aa73cd7a097c38d5ffa377d1314d3726e0f25cc2205220a83 |
container_end_page | 465 |
container_issue | 3 |
container_start_page | 457 |
container_title | AppliedMath |
container_volume | 2 |
creator | Ballico, Edoardo |
description | Let X⊂Pr be an integral and non-degenerate variety. A “cost-function” (for the Zariski topology, the semialgebraic one, or the Euclidean one) is a semicontinuous function w:=[1,+∞)∪+∞ such that w(a)=1 for a non-empty open subset of X. For any q∈Pr, the rank rX,w(q) of q with respect to (X,w) is the minimum of all ∑a∈Sw(a), where S is a finite subset of X spanning q. We have rX,w(q) |
doi_str_mv | 10.3390/appliedmath2030026 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_35365dd67a604a41b5fa62d6be2d1548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_35365dd67a604a41b5fa62d6be2d1548</doaj_id><sourcerecordid>oai_doaj_org_article_35365dd67a604a41b5fa62d6be2d1548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-10668b8c1c37dea5aa73cd7a097c38d5ffa377d1314d3726e0f25cc2205220a83</originalsourceid><addsrcrecordid>eNplkEFLAzEQhYMoWGr_gKf8gdUks0l2L4IUq4WCUtRrmCZZu7XdLElU-u9drYjgYXgz8x7f4RFyztkFQM0use-3rXc7zGvBgDGhjshIKA1FXbP6-M9-SiYpbdgQqaQGXY3I1RK710Q_2rymS596bzPNgSJ9iGEzHO27p88YW5_3FDs3GNOQcjF76wYvdGfkpMFt8pMfHZOn2c3j9K5Y3N_Op9eLwgqocsGZUtWqstyCdh4logbrNLJaW6icbBoErR0HXjrQQnnWCGmtEEwOgxWMyfzAdQE3po_tDuPeBGzN9yPEF4Mxt3brDUhQ0jmlUbESS76SDSrh1MoLx2X5xRIHlo0hpeibXx5n5qtQ879Q-AQWhGqa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ranks with Respect to a Projective Variety and a Cost-Function</title><source>DOAJ Directory of Open Access Journals</source><creator>Ballico, Edoardo</creator><creatorcontrib>Ballico, Edoardo</creatorcontrib><description>Let X⊂Pr be an integral and non-degenerate variety. A “cost-function” (for the Zariski topology, the semialgebraic one, or the Euclidean one) is a semicontinuous function w:=[1,+∞)∪+∞ such that w(a)=1 for a non-empty open subset of X. For any q∈Pr, the rank rX,w(q) of q with respect to (X,w) is the minimum of all ∑a∈Sw(a), where S is a finite subset of X spanning q. We have rX,w(q)<+∞ for all q. We discuss this definition and classify extremal cases of pairs (X,q). We give upper bounds for all rX,w(q) (twice the generic rank) not depending on w. This notion is the generalization of the case in which the cost-function w is the constant function 1. In this case, the rank is a well-studied notion that covers the tensor rank of tensors of arbitrary formats (PARAFAC or CP decomposition) and the additive decomposition of forms. We also adapt to cost-functions the rank 1 decomposition of real tensors in which we allow pairs of complex conjugate rank 1 tensors.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath2030026</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>real rank ; semialgebraic function ; tensor rank ; typical rank ; X-rank</subject><ispartof>AppliedMath, 2022-09, Vol.2 (3), p.457-465</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-10668b8c1c37dea5aa73cd7a097c38d5ffa377d1314d3726e0f25cc2205220a83</cites><orcidid>0000-0002-1432-7413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Ballico, Edoardo</creatorcontrib><title>Ranks with Respect to a Projective Variety and a Cost-Function</title><title>AppliedMath</title><description>Let X⊂Pr be an integral and non-degenerate variety. A “cost-function” (for the Zariski topology, the semialgebraic one, or the Euclidean one) is a semicontinuous function w:=[1,+∞)∪+∞ such that w(a)=1 for a non-empty open subset of X. For any q∈Pr, the rank rX,w(q) of q with respect to (X,w) is the minimum of all ∑a∈Sw(a), where S is a finite subset of X spanning q. We have rX,w(q)<+∞ for all q. We discuss this definition and classify extremal cases of pairs (X,q). We give upper bounds for all rX,w(q) (twice the generic rank) not depending on w. This notion is the generalization of the case in which the cost-function w is the constant function 1. In this case, the rank is a well-studied notion that covers the tensor rank of tensors of arbitrary formats (PARAFAC or CP decomposition) and the additive decomposition of forms. We also adapt to cost-functions the rank 1 decomposition of real tensors in which we allow pairs of complex conjugate rank 1 tensors.</description><subject>real rank</subject><subject>semialgebraic function</subject><subject>tensor rank</subject><subject>typical rank</subject><subject>X-rank</subject><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkEFLAzEQhYMoWGr_gKf8gdUks0l2L4IUq4WCUtRrmCZZu7XdLElU-u9drYjgYXgz8x7f4RFyztkFQM0use-3rXc7zGvBgDGhjshIKA1FXbP6-M9-SiYpbdgQqaQGXY3I1RK710Q_2rymS596bzPNgSJ9iGEzHO27p88YW5_3FDs3GNOQcjF76wYvdGfkpMFt8pMfHZOn2c3j9K5Y3N_Op9eLwgqocsGZUtWqstyCdh4logbrNLJaW6icbBoErR0HXjrQQnnWCGmtEEwOgxWMyfzAdQE3po_tDuPeBGzN9yPEF4Mxt3brDUhQ0jmlUbESS76SDSrh1MoLx2X5xRIHlo0hpeibXx5n5qtQ879Q-AQWhGqa</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ballico, Edoardo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1432-7413</orcidid></search><sort><creationdate>20220901</creationdate><title>Ranks with Respect to a Projective Variety and a Cost-Function</title><author>Ballico, Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-10668b8c1c37dea5aa73cd7a097c38d5ffa377d1314d3726e0f25cc2205220a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>real rank</topic><topic>semialgebraic function</topic><topic>tensor rank</topic><topic>typical rank</topic><topic>X-rank</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballico, Edoardo</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballico, Edoardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ranks with Respect to a Projective Variety and a Cost-Function</atitle><jtitle>AppliedMath</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>2</volume><issue>3</issue><spage>457</spage><epage>465</epage><pages>457-465</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>Let X⊂Pr be an integral and non-degenerate variety. A “cost-function” (for the Zariski topology, the semialgebraic one, or the Euclidean one) is a semicontinuous function w:=[1,+∞)∪+∞ such that w(a)=1 for a non-empty open subset of X. For any q∈Pr, the rank rX,w(q) of q with respect to (X,w) is the minimum of all ∑a∈Sw(a), where S is a finite subset of X spanning q. We have rX,w(q)<+∞ for all q. We discuss this definition and classify extremal cases of pairs (X,q). We give upper bounds for all rX,w(q) (twice the generic rank) not depending on w. This notion is the generalization of the case in which the cost-function w is the constant function 1. In this case, the rank is a well-studied notion that covers the tensor rank of tensors of arbitrary formats (PARAFAC or CP decomposition) and the additive decomposition of forms. We also adapt to cost-functions the rank 1 decomposition of real tensors in which we allow pairs of complex conjugate rank 1 tensors.</abstract><pub>MDPI AG</pub><doi>10.3390/appliedmath2030026</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1432-7413</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2673-9909 |
ispartof | AppliedMath, 2022-09, Vol.2 (3), p.457-465 |
issn | 2673-9909 2673-9909 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_35365dd67a604a41b5fa62d6be2d1548 |
source | DOAJ Directory of Open Access Journals |
subjects | real rank semialgebraic function tensor rank typical rank X-rank |
title | Ranks with Respect to a Projective Variety and a Cost-Function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ranks%20with%20Respect%20to%20a%20Projective%20Variety%20and%20a%20Cost-Function&rft.jtitle=AppliedMath&rft.au=Ballico,%20Edoardo&rft.date=2022-09-01&rft.volume=2&rft.issue=3&rft.spage=457&rft.epage=465&rft.pages=457-465&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath2030026&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_35365dd67a604a41b5fa62d6be2d1548%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-10668b8c1c37dea5aa73cd7a097c38d5ffa377d1314d3726e0f25cc2205220a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |