Loading…
Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions
We prove that, within the class of pair potential Hamiltonians, the excess entropy is a universal, temperature-independent functional of the density and pair correlation function. This result extends Henderson's theorem, which states that the free energy is a temperature dependent functional of...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2021-02, Vol.23 (2), p.234 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3 |
container_end_page | |
container_issue | 2 |
container_start_page | 234 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 23 |
creator | Nicholson, Donald M Gao, C Y McDonnell, Marshall T Sluss, Clifton C Keffer, David J |
description | We prove that, within the class of pair potential Hamiltonians, the excess entropy is a universal, temperature-independent functional of the density and pair correlation function. This result extends Henderson's theorem, which states that the free energy is a temperature dependent functional of the density and pair correlation. The stationarity and concavity of the excess entropy functional are discussed and related to the Gibbs-Bugoliubov inequality and to the free energy. We apply the Kirkwood approximation, which is commonly used for fluids, to both fluids and solids. Approximate excess entropy functionals are developed and compared to results from thermodynamic integration. The pair functional approach gives the absolute entropy and free energy based on simulation output at a single temperature without thermodynamic integration. We argue that a functional of the type, which is strictly applicable to pair potentials, is also suitable for first principles calculation of free energies from Born-Oppenheimer molecular dynamics performed at a single temperature. This advancement has the potential to reduce the evaluation the free energy to a simple modification to any procedure that evaluates the energy and the pair correlation function. |
doi_str_mv | 10.3390/e23020234 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_35459882b18a41bb8395b10cd8f2d55a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_35459882b18a41bb8395b10cd8f2d55a</doaj_id><sourcerecordid>2498496957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3</originalsourceid><addsrcrecordid>eNpVkUtvEzEURi1ERR90wR9AI1awSPFrZmwWSKikUKkSlUjX1vUrcTWxgz1TKf8ep2mjdmXL9_j4-n4IfSD4gjGJvzrKMMWU8TfohGApZ5xh_PbF_hidlnKPK0JJ9w4dM9b1hHfkBC3mccxps21uIeTmaopmDCnC0CxWLuXtt-ZnyM6MzTM2f4Bhgh3T_N1AjCEum9sVFNcsMsQSdpXyHh15GIo7f1rP0N3VfHH5e3bz59f15Y-bmeGdGGfeG4oFJ5YRbB23wnLvicAGLDFGA_cYY9BYC8x0D5R3IAg4KZgXvN5gZ-h677UJ7tUmhzXkrUoQ1ONByksFeQxmcIq1vJVCUE0EcKK1YLLVBBsrPLVtC9X1fe_aTHrtrHH1wzC8kr6uxLBSy_Sgelmn3_Mq-LQXpDIGVUwYnVmZFGMdnyJ9T0RPK_T56ZWc_k2ujGodinHDANGlqSjKpeCyk21f0S971ORUSnb-0AvBahe7OsRe2Y8vmz-Qzzmz_57EqCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498496957</pqid></control><display><type>article</type><title>Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><creator>Nicholson, Donald M ; Gao, C Y ; McDonnell, Marshall T ; Sluss, Clifton C ; Keffer, David J</creator><creatorcontrib>Nicholson, Donald M ; Gao, C Y ; McDonnell, Marshall T ; Sluss, Clifton C ; Keffer, David J ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>We prove that, within the class of pair potential Hamiltonians, the excess entropy is a universal, temperature-independent functional of the density and pair correlation function. This result extends Henderson's theorem, which states that the free energy is a temperature dependent functional of the density and pair correlation. The stationarity and concavity of the excess entropy functional are discussed and related to the Gibbs-Bugoliubov inequality and to the free energy. We apply the Kirkwood approximation, which is commonly used for fluids, to both fluids and solids. Approximate excess entropy functionals are developed and compared to results from thermodynamic integration. The pair functional approach gives the absolute entropy and free energy based on simulation output at a single temperature without thermodynamic integration. We argue that a functional of the type, which is strictly applicable to pair potentials, is also suitable for first principles calculation of free energies from Born-Oppenheimer molecular dynamics performed at a single temperature. This advancement has the potential to reduce the evaluation the free energy to a simple modification to any procedure that evaluates the energy and the pair correlation function.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e23020234</identifier><identifier>PMID: 33671461</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; entropy ; entropy functional ; free energy ; pair correlation function ; pair distribution function</subject><ispartof>Entropy (Basel, Switzerland), 2021-02, Vol.23 (2), p.234</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3</citedby><cites>FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3</cites><orcidid>0000-0002-6246-0286 ; 0000-0002-3713-2117 ; 0000000237132117 ; 0000000262460286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923074/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923074/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33671461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1771872$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nicholson, Donald M</creatorcontrib><creatorcontrib>Gao, C Y</creatorcontrib><creatorcontrib>McDonnell, Marshall T</creatorcontrib><creatorcontrib>Sluss, Clifton C</creatorcontrib><creatorcontrib>Keffer, David J</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>We prove that, within the class of pair potential Hamiltonians, the excess entropy is a universal, temperature-independent functional of the density and pair correlation function. This result extends Henderson's theorem, which states that the free energy is a temperature dependent functional of the density and pair correlation. The stationarity and concavity of the excess entropy functional are discussed and related to the Gibbs-Bugoliubov inequality and to the free energy. We apply the Kirkwood approximation, which is commonly used for fluids, to both fluids and solids. Approximate excess entropy functionals are developed and compared to results from thermodynamic integration. The pair functional approach gives the absolute entropy and free energy based on simulation output at a single temperature without thermodynamic integration. We argue that a functional of the type, which is strictly applicable to pair potentials, is also suitable for first principles calculation of free energies from Born-Oppenheimer molecular dynamics performed at a single temperature. This advancement has the potential to reduce the evaluation the free energy to a simple modification to any procedure that evaluates the energy and the pair correlation function.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>entropy</subject><subject>entropy functional</subject><subject>free energy</subject><subject>pair correlation function</subject><subject>pair distribution function</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtvEzEURi1ERR90wR9AI1awSPFrZmwWSKikUKkSlUjX1vUrcTWxgz1TKf8ep2mjdmXL9_j4-n4IfSD4gjGJvzrKMMWU8TfohGApZ5xh_PbF_hidlnKPK0JJ9w4dM9b1hHfkBC3mccxps21uIeTmaopmDCnC0CxWLuXtt-ZnyM6MzTM2f4Bhgh3T_N1AjCEum9sVFNcsMsQSdpXyHh15GIo7f1rP0N3VfHH5e3bz59f15Y-bmeGdGGfeG4oFJ5YRbB23wnLvicAGLDFGA_cYY9BYC8x0D5R3IAg4KZgXvN5gZ-h677UJ7tUmhzXkrUoQ1ONByksFeQxmcIq1vJVCUE0EcKK1YLLVBBsrPLVtC9X1fe_aTHrtrHH1wzC8kr6uxLBSy_Sgelmn3_Mq-LQXpDIGVUwYnVmZFGMdnyJ9T0RPK_T56ZWc_k2ujGodinHDANGlqSjKpeCyk21f0S971ORUSnb-0AvBahe7OsRe2Y8vmz-Qzzmz_57EqCg</recordid><startdate>20210217</startdate><enddate>20210217</enddate><creator>Nicholson, Donald M</creator><creator>Gao, C Y</creator><creator>McDonnell, Marshall T</creator><creator>Sluss, Clifton C</creator><creator>Keffer, David J</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6246-0286</orcidid><orcidid>https://orcid.org/0000-0002-3713-2117</orcidid><orcidid>https://orcid.org/0000000237132117</orcidid><orcidid>https://orcid.org/0000000262460286</orcidid></search><sort><creationdate>20210217</creationdate><title>Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions</title><author>Nicholson, Donald M ; Gao, C Y ; McDonnell, Marshall T ; Sluss, Clifton C ; Keffer, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>entropy</topic><topic>entropy functional</topic><topic>free energy</topic><topic>pair correlation function</topic><topic>pair distribution function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicholson, Donald M</creatorcontrib><creatorcontrib>Gao, C Y</creatorcontrib><creatorcontrib>McDonnell, Marshall T</creatorcontrib><creatorcontrib>Sluss, Clifton C</creatorcontrib><creatorcontrib>Keffer, David J</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicholson, Donald M</au><au>Gao, C Y</au><au>McDonnell, Marshall T</au><au>Sluss, Clifton C</au><au>Keffer, David J</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2021-02-17</date><risdate>2021</risdate><volume>23</volume><issue>2</issue><spage>234</spage><pages>234-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>We prove that, within the class of pair potential Hamiltonians, the excess entropy is a universal, temperature-independent functional of the density and pair correlation function. This result extends Henderson's theorem, which states that the free energy is a temperature dependent functional of the density and pair correlation. The stationarity and concavity of the excess entropy functional are discussed and related to the Gibbs-Bugoliubov inequality and to the free energy. We apply the Kirkwood approximation, which is commonly used for fluids, to both fluids and solids. Approximate excess entropy functionals are developed and compared to results from thermodynamic integration. The pair functional approach gives the absolute entropy and free energy based on simulation output at a single temperature without thermodynamic integration. We argue that a functional of the type, which is strictly applicable to pair potentials, is also suitable for first principles calculation of free energies from Born-Oppenheimer molecular dynamics performed at a single temperature. This advancement has the potential to reduce the evaluation the free energy to a simple modification to any procedure that evaluates the energy and the pair correlation function.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>33671461</pmid><doi>10.3390/e23020234</doi><orcidid>https://orcid.org/0000-0002-6246-0286</orcidid><orcidid>https://orcid.org/0000-0002-3713-2117</orcidid><orcidid>https://orcid.org/0000000237132117</orcidid><orcidid>https://orcid.org/0000000262460286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2021-02, Vol.23 (2), p.234 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_35459882b18a41bb8395b10cd8f2d55a |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS entropy entropy functional free energy pair correlation function pair distribution function |
title | Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20Pair%20Functional%20Theory:%20Direct%20Entropy%20Evaluation%20Spanning%20Phase%20Transitions&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Nicholson,%20Donald%20M&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2021-02-17&rft.volume=23&rft.issue=2&rft.spage=234&rft.pages=234-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e23020234&rft_dat=%3Cproquest_doaj_%3E2498496957%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2498496957&rft_id=info:pmid/33671461&rfr_iscdi=true |