Loading…

Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions

We prove that, within the class of pair potential Hamiltonians, the excess entropy is a universal, temperature-independent functional of the density and pair correlation function. This result extends Henderson's theorem, which states that the free energy is a temperature dependent functional of...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2021-02, Vol.23 (2), p.234
Main Authors: Nicholson, Donald M, Gao, C Y, McDonnell, Marshall T, Sluss, Clifton C, Keffer, David J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3
cites cdi_FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3
container_end_page
container_issue 2
container_start_page 234
container_title Entropy (Basel, Switzerland)
container_volume 23
creator Nicholson, Donald M
Gao, C Y
McDonnell, Marshall T
Sluss, Clifton C
Keffer, David J
description We prove that, within the class of pair potential Hamiltonians, the excess entropy is a universal, temperature-independent functional of the density and pair correlation function. This result extends Henderson's theorem, which states that the free energy is a temperature dependent functional of the density and pair correlation. The stationarity and concavity of the excess entropy functional are discussed and related to the Gibbs-Bugoliubov inequality and to the free energy. We apply the Kirkwood approximation, which is commonly used for fluids, to both fluids and solids. Approximate excess entropy functionals are developed and compared to results from thermodynamic integration. The pair functional approach gives the absolute entropy and free energy based on simulation output at a single temperature without thermodynamic integration. We argue that a functional of the type, which is strictly applicable to pair potentials, is also suitable for first principles calculation of free energies from Born-Oppenheimer molecular dynamics performed at a single temperature. This advancement has the potential to reduce the evaluation the free energy to a simple modification to any procedure that evaluates the energy and the pair correlation function.
doi_str_mv 10.3390/e23020234
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_35459882b18a41bb8395b10cd8f2d55a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_35459882b18a41bb8395b10cd8f2d55a</doaj_id><sourcerecordid>2498496957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3</originalsourceid><addsrcrecordid>eNpVkUtvEzEURi1ERR90wR9AI1awSPFrZmwWSKikUKkSlUjX1vUrcTWxgz1TKf8ep2mjdmXL9_j4-n4IfSD4gjGJvzrKMMWU8TfohGApZ5xh_PbF_hidlnKPK0JJ9w4dM9b1hHfkBC3mccxps21uIeTmaopmDCnC0CxWLuXtt-ZnyM6MzTM2f4Bhgh3T_N1AjCEum9sVFNcsMsQSdpXyHh15GIo7f1rP0N3VfHH5e3bz59f15Y-bmeGdGGfeG4oFJ5YRbB23wnLvicAGLDFGA_cYY9BYC8x0D5R3IAg4KZgXvN5gZ-h677UJ7tUmhzXkrUoQ1ONByksFeQxmcIq1vJVCUE0EcKK1YLLVBBsrPLVtC9X1fe_aTHrtrHH1wzC8kr6uxLBSy_Sgelmn3_Mq-LQXpDIGVUwYnVmZFGMdnyJ9T0RPK_T56ZWc_k2ujGodinHDANGlqSjKpeCyk21f0S971ORUSnb-0AvBahe7OsRe2Y8vmz-Qzzmz_57EqCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498496957</pqid></control><display><type>article</type><title>Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><creator>Nicholson, Donald M ; Gao, C Y ; McDonnell, Marshall T ; Sluss, Clifton C ; Keffer, David J</creator><creatorcontrib>Nicholson, Donald M ; Gao, C Y ; McDonnell, Marshall T ; Sluss, Clifton C ; Keffer, David J ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>We prove that, within the class of pair potential Hamiltonians, the excess entropy is a universal, temperature-independent functional of the density and pair correlation function. This result extends Henderson's theorem, which states that the free energy is a temperature dependent functional of the density and pair correlation. The stationarity and concavity of the excess entropy functional are discussed and related to the Gibbs-Bugoliubov inequality and to the free energy. We apply the Kirkwood approximation, which is commonly used for fluids, to both fluids and solids. Approximate excess entropy functionals are developed and compared to results from thermodynamic integration. The pair functional approach gives the absolute entropy and free energy based on simulation output at a single temperature without thermodynamic integration. We argue that a functional of the type, which is strictly applicable to pair potentials, is also suitable for first principles calculation of free energies from Born-Oppenheimer molecular dynamics performed at a single temperature. This advancement has the potential to reduce the evaluation the free energy to a simple modification to any procedure that evaluates the energy and the pair correlation function.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e23020234</identifier><identifier>PMID: 33671461</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; entropy ; entropy functional ; free energy ; pair correlation function ; pair distribution function</subject><ispartof>Entropy (Basel, Switzerland), 2021-02, Vol.23 (2), p.234</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3</citedby><cites>FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3</cites><orcidid>0000-0002-6246-0286 ; 0000-0002-3713-2117 ; 0000000237132117 ; 0000000262460286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923074/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923074/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33671461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1771872$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nicholson, Donald M</creatorcontrib><creatorcontrib>Gao, C Y</creatorcontrib><creatorcontrib>McDonnell, Marshall T</creatorcontrib><creatorcontrib>Sluss, Clifton C</creatorcontrib><creatorcontrib>Keffer, David J</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>We prove that, within the class of pair potential Hamiltonians, the excess entropy is a universal, temperature-independent functional of the density and pair correlation function. This result extends Henderson's theorem, which states that the free energy is a temperature dependent functional of the density and pair correlation. The stationarity and concavity of the excess entropy functional are discussed and related to the Gibbs-Bugoliubov inequality and to the free energy. We apply the Kirkwood approximation, which is commonly used for fluids, to both fluids and solids. Approximate excess entropy functionals are developed and compared to results from thermodynamic integration. The pair functional approach gives the absolute entropy and free energy based on simulation output at a single temperature without thermodynamic integration. We argue that a functional of the type, which is strictly applicable to pair potentials, is also suitable for first principles calculation of free energies from Born-Oppenheimer molecular dynamics performed at a single temperature. This advancement has the potential to reduce the evaluation the free energy to a simple modification to any procedure that evaluates the energy and the pair correlation function.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>entropy</subject><subject>entropy functional</subject><subject>free energy</subject><subject>pair correlation function</subject><subject>pair distribution function</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtvEzEURi1ERR90wR9AI1awSPFrZmwWSKikUKkSlUjX1vUrcTWxgz1TKf8ep2mjdmXL9_j4-n4IfSD4gjGJvzrKMMWU8TfohGApZ5xh_PbF_hidlnKPK0JJ9w4dM9b1hHfkBC3mccxps21uIeTmaopmDCnC0CxWLuXtt-ZnyM6MzTM2f4Bhgh3T_N1AjCEum9sVFNcsMsQSdpXyHh15GIo7f1rP0N3VfHH5e3bz59f15Y-bmeGdGGfeG4oFJ5YRbB23wnLvicAGLDFGA_cYY9BYC8x0D5R3IAg4KZgXvN5gZ-h677UJ7tUmhzXkrUoQ1ONByksFeQxmcIq1vJVCUE0EcKK1YLLVBBsrPLVtC9X1fe_aTHrtrHH1wzC8kr6uxLBSy_Sgelmn3_Mq-LQXpDIGVUwYnVmZFGMdnyJ9T0RPK_T56ZWc_k2ujGodinHDANGlqSjKpeCyk21f0S971ORUSnb-0AvBahe7OsRe2Y8vmz-Qzzmz_57EqCg</recordid><startdate>20210217</startdate><enddate>20210217</enddate><creator>Nicholson, Donald M</creator><creator>Gao, C Y</creator><creator>McDonnell, Marshall T</creator><creator>Sluss, Clifton C</creator><creator>Keffer, David J</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6246-0286</orcidid><orcidid>https://orcid.org/0000-0002-3713-2117</orcidid><orcidid>https://orcid.org/0000000237132117</orcidid><orcidid>https://orcid.org/0000000262460286</orcidid></search><sort><creationdate>20210217</creationdate><title>Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions</title><author>Nicholson, Donald M ; Gao, C Y ; McDonnell, Marshall T ; Sluss, Clifton C ; Keffer, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>entropy</topic><topic>entropy functional</topic><topic>free energy</topic><topic>pair correlation function</topic><topic>pair distribution function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicholson, Donald M</creatorcontrib><creatorcontrib>Gao, C Y</creatorcontrib><creatorcontrib>McDonnell, Marshall T</creatorcontrib><creatorcontrib>Sluss, Clifton C</creatorcontrib><creatorcontrib>Keffer, David J</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicholson, Donald M</au><au>Gao, C Y</au><au>McDonnell, Marshall T</au><au>Sluss, Clifton C</au><au>Keffer, David J</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2021-02-17</date><risdate>2021</risdate><volume>23</volume><issue>2</issue><spage>234</spage><pages>234-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>We prove that, within the class of pair potential Hamiltonians, the excess entropy is a universal, temperature-independent functional of the density and pair correlation function. This result extends Henderson's theorem, which states that the free energy is a temperature dependent functional of the density and pair correlation. The stationarity and concavity of the excess entropy functional are discussed and related to the Gibbs-Bugoliubov inequality and to the free energy. We apply the Kirkwood approximation, which is commonly used for fluids, to both fluids and solids. Approximate excess entropy functionals are developed and compared to results from thermodynamic integration. The pair functional approach gives the absolute entropy and free energy based on simulation output at a single temperature without thermodynamic integration. We argue that a functional of the type, which is strictly applicable to pair potentials, is also suitable for first principles calculation of free energies from Born-Oppenheimer molecular dynamics performed at a single temperature. This advancement has the potential to reduce the evaluation the free energy to a simple modification to any procedure that evaluates the energy and the pair correlation function.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>33671461</pmid><doi>10.3390/e23020234</doi><orcidid>https://orcid.org/0000-0002-6246-0286</orcidid><orcidid>https://orcid.org/0000-0002-3713-2117</orcidid><orcidid>https://orcid.org/0000000237132117</orcidid><orcidid>https://orcid.org/0000000262460286</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2021-02, Vol.23 (2), p.234
issn 1099-4300
1099-4300
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_35459882b18a41bb8395b10cd8f2d55a
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
entropy
entropy functional
free energy
pair correlation function
pair distribution function
title Entropy Pair Functional Theory: Direct Entropy Evaluation Spanning Phase Transitions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20Pair%20Functional%20Theory:%20Direct%20Entropy%20Evaluation%20Spanning%20Phase%20Transitions&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Nicholson,%20Donald%20M&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2021-02-17&rft.volume=23&rft.issue=2&rft.spage=234&rft.pages=234-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e23020234&rft_dat=%3Cproquest_doaj_%3E2498496957%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-ffc20841d310de4d8d4ff180cad1ccba4f000ab0b803b7a246a81ae983f840de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2498496957&rft_id=info:pmid/33671461&rfr_iscdi=true