Loading…
Research progress of transition metal compounds as bifunctional catalysts for zinc-air batteries
Zinc-air batteries (ZABs) are widely studied because of their high theoretical energy density, high battery voltage, environmental protection, and low price. However, the slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the air electrode limits the further appl...
Saved in:
Published in: | Nano Research Energy 2024-03, Vol.3 (1), p.e9120092 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Zinc-air batteries (ZABs) are widely studied because of their high theoretical energy density, high battery voltage, environmental protection, and low price. However, the slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the air electrode limits the further application of ZABs, so that how to develop a cheap, efficient, and stable catalyst with bifunctional catalytic activity is the key to solving the development of ZABs. Transition metal compounds are widely used as cathode materials for ZABs due to their low cost, high electrocatalytic activity, and stable structure. This review summarizes the research progress of transition metal compounds as bifunctional catalysts for ZABs. The development history, operation principle, and mechanism of ORR and OER reactions are introduced first. The application and development of transition metal compounds as bifunctional catalysts for ZABs in recent years are systematically introduced, including transition metal oxides (TMOs), transition metal nitrides (TMNs), transition metal sulfides (TMSs), transition metal carbides (TMCs), transition metal phosphates (TMPs), and others. In addition, the shortcomings of transition metal compounds as bifunctional catalysts for ZABs were summarized and reasonable design strategies and improvement measures were put forward, aiming at providing a reference for the design and construction of high-performance ZABs cathode materials. Finally, the challenges and future in this field are discussed and prospected. |
---|---|
ISSN: | 2791-0091 2790-8119 |
DOI: | 10.26599/NRE.2023.9120092 |