Loading…

Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images

Noise-based quality evaluation of MRI images is highly desired in noise-dominant environments. Current noise-based MRI quality evaluation methods have drawbacks which limit their effective performance. Traditional full-reference methods such as SNR and most of the model-based techniques cannot provi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of imaging 2019-01, Vol.5 (1), p.20
Main Authors: Osadebey, Michael, Pedersen, Marius, Arnold, Douglas, Wendel-Mitoraj, Katrina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c464t-91368ceebd57a7218d7c793875e8c0c1f6e5d2e3f379cea407ab8a173ded5b0e3
cites cdi_FETCH-LOGICAL-c464t-91368ceebd57a7218d7c793875e8c0c1f6e5d2e3f379cea407ab8a173ded5b0e3
container_end_page
container_issue 1
container_start_page 20
container_title Journal of imaging
container_volume 5
creator Osadebey, Michael
Pedersen, Marius
Arnold, Douglas
Wendel-Mitoraj, Katrina
description Noise-based quality evaluation of MRI images is highly desired in noise-dominant environments. Current noise-based MRI quality evaluation methods have drawbacks which limit their effective performance. Traditional full-reference methods such as SNR and most of the model-based techniques cannot provide perceptual quality metrics required for accurate diagnosis, treatment and monitoring of diseases. Although techniques based on the Moran coefficients are perceptual quality metrics, they are full-reference methods and will be ineffective in applications where the reference image is not available. Furthermore, the predicted quality scores are difficult to interpret because their quality indices are not standardized. In this paper, we propose a new no-reference perceptual quality evaluation method for grayscale images such as MRI images. Our approach is formulated to mimic how humans perceive an image. It transforms noise level into a standardized perceptual quality score. Global Moran statistics is combined with local indicators of spatial autocorrelation in the form of local Moran statistics. Quality score is predicted from perceptually weighted combination of clustered and random pixels. Performance evaluation, comparative performance evaluation and validation by human observers, shows that the proposed method will be a useful tool in the evaluation of retrospectively acquired MRI images and the evaluation of noise reduction algorithms.
doi_str_mv 10.3390/jimaging5010020
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_35655a6d2b6349719d22a13fa2a4bea3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_35655a6d2b6349719d22a13fa2a4bea3</doaj_id><sourcerecordid>2548578361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-91368ceebd57a7218d7c793875e8c0c1f6e5d2e3f379cea407ab8a173ded5b0e3</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEolXpmaslLuWw1B9xnHBA2lZ8RNryVZC4WRN7sniVtYOdIPo3-MU4bIVoDx57Xr96PB5NUTxl9IUQDT3fuT1snd9Kyijl9EFxzAUTq1KIbw__Ox8VpyntKKWs4Xk1j4sjUZaVVFQcF783wcBAWm-dgSnEREJPrkeYXFbX8xRMiBGHnAdPzjbt9fr5S7Iex2GxL9oUyMXgvCXvg0u4uoCElnzEaHCc5sz4lIObbsgVTtGZ5SH8RfoQyRVsPU5Z-owpePAGSZv_g-lJ8aiHIeHp7X5SfH3z-svlu9Xmw9v2cr1ZmbIqp1XDRFUbxM5KBYqz2iqjGlEribWhhvUVSstR9EI1BqGkCroamBIWrewoipOiPXBtgJ0eY-5mvNEBnP4rhLjVEHOBA2ohKymhsryrRNko1ljOgYkeOJQdgsisVwfWOHd7tAb9FGG4A7174913vQ0_dS04rdUCOLsFxPBjxjTpvUsGhwE8hjlpLquay7JueLY-u2fdhTn63Cq9OKSqRcWy6_zgMjGkFLH_VwyjehkffW98xB9Xerno</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548578361</pqid></control><display><type>article</type><title>Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><creator>Osadebey, Michael ; Pedersen, Marius ; Arnold, Douglas ; Wendel-Mitoraj, Katrina</creator><creatorcontrib>Osadebey, Michael ; Pedersen, Marius ; Arnold, Douglas ; Wendel-Mitoraj, Katrina</creatorcontrib><description>Noise-based quality evaluation of MRI images is highly desired in noise-dominant environments. Current noise-based MRI quality evaluation methods have drawbacks which limit their effective performance. Traditional full-reference methods such as SNR and most of the model-based techniques cannot provide perceptual quality metrics required for accurate diagnosis, treatment and monitoring of diseases. Although techniques based on the Moran coefficients are perceptual quality metrics, they are full-reference methods and will be ineffective in applications where the reference image is not available. Furthermore, the predicted quality scores are difficult to interpret because their quality indices are not standardized. In this paper, we propose a new no-reference perceptual quality evaluation method for grayscale images such as MRI images. Our approach is formulated to mimic how humans perceive an image. It transforms noise level into a standardized perceptual quality score. Global Moran statistics is combined with local indicators of spatial autocorrelation in the form of local Moran statistics. Quality score is predicted from perceptually weighted combination of clustered and random pixels. Performance evaluation, comparative performance evaluation and validation by human observers, shows that the proposed method will be a useful tool in the evaluation of retrospectively acquired MRI images and the evaluation of noise reduction algorithms.</description><identifier>ISSN: 2313-433X</identifier><identifier>EISSN: 2313-433X</identifier><identifier>DOI: 10.3390/jimaging5010020</identifier><identifier>PMID: 34465703</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Autocorrelation ; contrast ; global moran statistics (GMS) ; Image acquisition ; Image quality ; Indicators ; local indicators of spatial autocorrelation (LISA) ; local moran statistics (LMS) ; Magnetic resonance imaging ; magnetic resonance imaging (MRI) ; Mean square errors ; Medical imaging ; Neighborhoods ; noise ; Noise levels ; Noise reduction ; perceptual quality ; Performance evaluation ; Physiology ; Quality assessment ; sharpness ; Signal to noise ratio</subject><ispartof>Journal of imaging, 2019-01, Vol.5 (1), p.20</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-91368ceebd57a7218d7c793875e8c0c1f6e5d2e3f379cea407ab8a173ded5b0e3</citedby><cites>FETCH-LOGICAL-c464t-91368ceebd57a7218d7c793875e8c0c1f6e5d2e3f379cea407ab8a173ded5b0e3</cites><orcidid>0000-0002-4681-2958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548578361/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548578361?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Osadebey, Michael</creatorcontrib><creatorcontrib>Pedersen, Marius</creatorcontrib><creatorcontrib>Arnold, Douglas</creatorcontrib><creatorcontrib>Wendel-Mitoraj, Katrina</creatorcontrib><title>Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images</title><title>Journal of imaging</title><description>Noise-based quality evaluation of MRI images is highly desired in noise-dominant environments. Current noise-based MRI quality evaluation methods have drawbacks which limit their effective performance. Traditional full-reference methods such as SNR and most of the model-based techniques cannot provide perceptual quality metrics required for accurate diagnosis, treatment and monitoring of diseases. Although techniques based on the Moran coefficients are perceptual quality metrics, they are full-reference methods and will be ineffective in applications where the reference image is not available. Furthermore, the predicted quality scores are difficult to interpret because their quality indices are not standardized. In this paper, we propose a new no-reference perceptual quality evaluation method for grayscale images such as MRI images. Our approach is formulated to mimic how humans perceive an image. It transforms noise level into a standardized perceptual quality score. Global Moran statistics is combined with local indicators of spatial autocorrelation in the form of local Moran statistics. Quality score is predicted from perceptually weighted combination of clustered and random pixels. Performance evaluation, comparative performance evaluation and validation by human observers, shows that the proposed method will be a useful tool in the evaluation of retrospectively acquired MRI images and the evaluation of noise reduction algorithms.</description><subject>Algorithms</subject><subject>Autocorrelation</subject><subject>contrast</subject><subject>global moran statistics (GMS)</subject><subject>Image acquisition</subject><subject>Image quality</subject><subject>Indicators</subject><subject>local indicators of spatial autocorrelation (LISA)</subject><subject>local moran statistics (LMS)</subject><subject>Magnetic resonance imaging</subject><subject>magnetic resonance imaging (MRI)</subject><subject>Mean square errors</subject><subject>Medical imaging</subject><subject>Neighborhoods</subject><subject>noise</subject><subject>Noise levels</subject><subject>Noise reduction</subject><subject>perceptual quality</subject><subject>Performance evaluation</subject><subject>Physiology</subject><subject>Quality assessment</subject><subject>sharpness</subject><subject>Signal to noise ratio</subject><issn>2313-433X</issn><issn>2313-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEolXpmaslLuWw1B9xnHBA2lZ8RNryVZC4WRN7sniVtYOdIPo3-MU4bIVoDx57Xr96PB5NUTxl9IUQDT3fuT1snd9Kyijl9EFxzAUTq1KIbw__Ox8VpyntKKWs4Xk1j4sjUZaVVFQcF783wcBAWm-dgSnEREJPrkeYXFbX8xRMiBGHnAdPzjbt9fr5S7Iex2GxL9oUyMXgvCXvg0u4uoCElnzEaHCc5sz4lIObbsgVTtGZ5SH8RfoQyRVsPU5Z-owpePAGSZv_g-lJ8aiHIeHp7X5SfH3z-svlu9Xmw9v2cr1ZmbIqp1XDRFUbxM5KBYqz2iqjGlEribWhhvUVSstR9EI1BqGkCroamBIWrewoipOiPXBtgJ0eY-5mvNEBnP4rhLjVEHOBA2ohKymhsryrRNko1ljOgYkeOJQdgsisVwfWOHd7tAb9FGG4A7174913vQ0_dS04rdUCOLsFxPBjxjTpvUsGhwE8hjlpLquay7JueLY-u2fdhTn63Cq9OKSqRcWy6_zgMjGkFLH_VwyjehkffW98xB9Xerno</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Osadebey, Michael</creator><creator>Pedersen, Marius</creator><creator>Arnold, Douglas</creator><creator>Wendel-Mitoraj, Katrina</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4681-2958</orcidid></search><sort><creationdate>20190101</creationdate><title>Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images</title><author>Osadebey, Michael ; Pedersen, Marius ; Arnold, Douglas ; Wendel-Mitoraj, Katrina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-91368ceebd57a7218d7c793875e8c0c1f6e5d2e3f379cea407ab8a173ded5b0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Autocorrelation</topic><topic>contrast</topic><topic>global moran statistics (GMS)</topic><topic>Image acquisition</topic><topic>Image quality</topic><topic>Indicators</topic><topic>local indicators of spatial autocorrelation (LISA)</topic><topic>local moran statistics (LMS)</topic><topic>Magnetic resonance imaging</topic><topic>magnetic resonance imaging (MRI)</topic><topic>Mean square errors</topic><topic>Medical imaging</topic><topic>Neighborhoods</topic><topic>noise</topic><topic>Noise levels</topic><topic>Noise reduction</topic><topic>perceptual quality</topic><topic>Performance evaluation</topic><topic>Physiology</topic><topic>Quality assessment</topic><topic>sharpness</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osadebey, Michael</creatorcontrib><creatorcontrib>Pedersen, Marius</creatorcontrib><creatorcontrib>Arnold, Douglas</creatorcontrib><creatorcontrib>Wendel-Mitoraj, Katrina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osadebey, Michael</au><au>Pedersen, Marius</au><au>Arnold, Douglas</au><au>Wendel-Mitoraj, Katrina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images</atitle><jtitle>Journal of imaging</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>20</spage><pages>20-</pages><issn>2313-433X</issn><eissn>2313-433X</eissn><abstract>Noise-based quality evaluation of MRI images is highly desired in noise-dominant environments. Current noise-based MRI quality evaluation methods have drawbacks which limit their effective performance. Traditional full-reference methods such as SNR and most of the model-based techniques cannot provide perceptual quality metrics required for accurate diagnosis, treatment and monitoring of diseases. Although techniques based on the Moran coefficients are perceptual quality metrics, they are full-reference methods and will be ineffective in applications where the reference image is not available. Furthermore, the predicted quality scores are difficult to interpret because their quality indices are not standardized. In this paper, we propose a new no-reference perceptual quality evaluation method for grayscale images such as MRI images. Our approach is formulated to mimic how humans perceive an image. It transforms noise level into a standardized perceptual quality score. Global Moran statistics is combined with local indicators of spatial autocorrelation in the form of local Moran statistics. Quality score is predicted from perceptually weighted combination of clustered and random pixels. Performance evaluation, comparative performance evaluation and validation by human observers, shows that the proposed method will be a useful tool in the evaluation of retrospectively acquired MRI images and the evaluation of noise reduction algorithms.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34465703</pmid><doi>10.3390/jimaging5010020</doi><orcidid>https://orcid.org/0000-0002-4681-2958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2313-433X
ispartof Journal of imaging, 2019-01, Vol.5 (1), p.20
issn 2313-433X
2313-433X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_35655a6d2b6349719d22a13fa2a4bea3
source PubMed Central Free; Publicly Available Content (ProQuest)
subjects Algorithms
Autocorrelation
contrast
global moran statistics (GMS)
Image acquisition
Image quality
Indicators
local indicators of spatial autocorrelation (LISA)
local moran statistics (LMS)
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Mean square errors
Medical imaging
Neighborhoods
noise
Noise levels
Noise reduction
perceptual quality
Performance evaluation
Physiology
Quality assessment
sharpness
Signal to noise ratio
title Local Indicators of Spatial Autocorrelation (LISA): Application to Blind Noise-Based Perceptual Quality Metric Index for Magnetic Resonance Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Indicators%20of%20Spatial%20Autocorrelation%20(LISA):%20Application%20to%20Blind%20Noise-Based%20Perceptual%20Quality%20Metric%20Index%20for%20Magnetic%20Resonance%20Images&rft.jtitle=Journal%20of%20imaging&rft.au=Osadebey,%20Michael&rft.date=2019-01-01&rft.volume=5&rft.issue=1&rft.spage=20&rft.pages=20-&rft.issn=2313-433X&rft.eissn=2313-433X&rft_id=info:doi/10.3390/jimaging5010020&rft_dat=%3Cproquest_doaj_%3E2548578361%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-91368ceebd57a7218d7c793875e8c0c1f6e5d2e3f379cea407ab8a173ded5b0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548578361&rft_id=info:pmid/34465703&rfr_iscdi=true