Loading…

Benefits of Investigating the Thermal Component for Moisture Safety in Ventilated Attics

Cold ventilated attics often have mould problems in Sweden. This is valid both for old and sometimes newly built attics. Increased insulation on the attic floor is assumed to increase the problem. To investigate this, numerical 1D models like WUFI or WUFI+ are typically used. These models give resul...

Full description

Saved in:
Bibliographic Details
Main Authors: Claesson, Johan, Wallentén, Petter
Format: Conference Proceeding
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cold ventilated attics often have mould problems in Sweden. This is valid both for old and sometimes newly built attics. Increased insulation on the attic floor is assumed to increase the problem. To investigate this, numerical 1D models like WUFI or WUFI+ are typically used. These models give results but the physical processes are not so transparent for the user due to the complex numerical techniques involved and takes a long time to simulate. The problem is mainly related to the temperature in the attic, the ventilation rate and possible of leaks from the living space. All exposed surfaces in the attic will buffer moisture variations. But if this buffering is neglected and the leakage is treated as a constant the moisture content in the attic is only dependent on the ventilation with outside air and the assumed leakage. This would make a pure thermal investigation meaningful. An analytical model for the thermal problem was developed that took into account radiation between the interior surfaces and the different boundary conditions at the outside and inside surfaces. Using this model a parameter study of exterior roofing insulation was done using a moisture transport model that only took into account convection exchange. The results were compared with WUFI Pro and WUFI+ simulations which included the moisture exchange between air and internal surfaces. The comparison showed that the pure thermal model gave, as expected, larger variations in relative humidity, but that the results were qualitatively very similar. This indicates that analytical solutions of thermal problems can be used as a base in qualitative investigations of certain combined heat and moisture problems.
ISSN:2267-1242
2267-1242
DOI:10.1051/e3sconf/202017223001