Loading…
Rapid Non-Destructive Quantification of Eugenol in Curdlan Biofilms by Electronic Nose Combined with Gas Chromatography-Mass Spectrometry
Eugenol is hepatotoxic and potentially hazardous to human health. This paper reports on a rapid non-destructive quantitative method for the determination of eugenol concentration in curdlan (CD) biofilms by electronic nose (E-nose) combined with gas chromatography-mass spectrometry (GC-MS). Differen...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2020-08, Vol.20 (16), p.4441 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3 |
container_end_page | |
container_issue | 16 |
container_start_page | 4441 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Han, Lu Zhu, Jingyi Fan, Xia Zhang, Chong Tu, Kang Peng, Jing Wang, Jiahong Pan, Leiqing |
description | Eugenol is hepatotoxic and potentially hazardous to human health. This paper reports on a rapid non-destructive quantitative method for the determination of eugenol concentration in curdlan (CD) biofilms by electronic nose (E-nose) combined with gas chromatography-mass spectrometry (GC-MS). Different concentrations of eugenol were added to the film-forming solution to form a series of biofilms by casting method, and the actual eugenol concentration in the biofilm was determined. Analysis of the odor collected on the biofilms was carried out by GC-MS and an E-nose. The E-nose data was subjected to principal component analysis (PCA) and linear discriminant analysis (LDA) in order to establish a discriminant model for determining eugenol concentrations in the biofilms. Further analyses involving the application of all sensors and featured sensors, the prediction model-based partial least squares (PLS) and support vector machines (SVM) were carried out to determine eugenol concentration in the CD biofilms. The results showed that the optimal prediction model for eugenol concentration was obtained by PLS at R
of 0.952 using 10 sensors. The study described a rapid, non-destructive detection and quantitative method for determining eugenol concentration in bio-based packaging materials. |
doi_str_mv | 10.3390/s20164441 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_356c68f37a40490eaac88e29e44d1e26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_356c68f37a40490eaac88e29e44d1e26</doaj_id><sourcerecordid>2433748020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3</originalsourceid><addsrcrecordid>eNpVks1u1DAQxyNERUvhwAsgS5w4BPyV2L4gQVhKpbaIr7PlOJNdrxI7tZ2ifQTemtBtV-1pRjP_-c2MZoriFcHvGFP4faKY1Jxz8qQ4IZzyUlKKnz7wj4vnKW0xpowx-aw4ZlRILok8Kf7-MJPr0FXw5WdIOc42uxtA32fjs-udNdkFj0KPVvMafBiQ86iZYzcYjz650LthTKjdodUANsfgnV1YCVATxtZ56NAflzfozCTUbGIYTQ7raKbNrrw0KaGf023VCDnuXhRHvRkSvLyzp8XvL6tfzdfy4tvZefPxorS8VrkEwTjFFtrK4LqntK0FlaQCrDivBAMLglZ9T4gSVlJVMUmspao1UKslaNlpcb7ndsFs9RTdaOJOB-P0bSDEtTYxOzuAZlVta9kzYTjmCoMxVkqgCjjvCNB6YX3Ys6a5HaGz4HM0wyPo44x3G70ON1pwQZlSC-DNHSCG63k5gN6GOfplf005Y4JLTPGiertX2RhSitAfOhCs_3-APnzAon39cKSD8v7k7B8H16zm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433748020</pqid></control><display><type>article</type><title>Rapid Non-Destructive Quantification of Eugenol in Curdlan Biofilms by Electronic Nose Combined with Gas Chromatography-Mass Spectrometry</title><source>PubMed Central Free</source><source>ProQuest Publicly Available Content database</source><creator>Han, Lu ; Zhu, Jingyi ; Fan, Xia ; Zhang, Chong ; Tu, Kang ; Peng, Jing ; Wang, Jiahong ; Pan, Leiqing</creator><creatorcontrib>Han, Lu ; Zhu, Jingyi ; Fan, Xia ; Zhang, Chong ; Tu, Kang ; Peng, Jing ; Wang, Jiahong ; Pan, Leiqing</creatorcontrib><description>Eugenol is hepatotoxic and potentially hazardous to human health. This paper reports on a rapid non-destructive quantitative method for the determination of eugenol concentration in curdlan (CD) biofilms by electronic nose (E-nose) combined with gas chromatography-mass spectrometry (GC-MS). Different concentrations of eugenol were added to the film-forming solution to form a series of biofilms by casting method, and the actual eugenol concentration in the biofilm was determined. Analysis of the odor collected on the biofilms was carried out by GC-MS and an E-nose. The E-nose data was subjected to principal component analysis (PCA) and linear discriminant analysis (LDA) in order to establish a discriminant model for determining eugenol concentrations in the biofilms. Further analyses involving the application of all sensors and featured sensors, the prediction model-based partial least squares (PLS) and support vector machines (SVM) were carried out to determine eugenol concentration in the CD biofilms. The results showed that the optimal prediction model for eugenol concentration was obtained by PLS at R
of 0.952 using 10 sensors. The study described a rapid, non-destructive detection and quantitative method for determining eugenol concentration in bio-based packaging materials.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20164441</identifier><identifier>PMID: 32784818</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>beta-Glucans ; biofilm ; Biofilms ; Chromatography ; curdlan ; Discriminant analysis ; Electronic Nose ; Electronic noses ; Eugenol ; Food ; Gas chromatography ; Gas Chromatography-Mass Spectrometry ; GC-MS ; Glycerol ; Humans ; Mass spectrometry ; Methods ; Nondestructive testing ; Odorants - analysis ; prediction model ; Prediction models ; Principal components analysis ; Quantitative analysis ; Scientific imaging ; Sensors ; Spectroscopy ; Support vector machines ; Volatility</subject><ispartof>Sensors (Basel, Switzerland), 2020-08, Vol.20 (16), p.4441</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3</citedby><cites>FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3</cites><orcidid>0000-0002-7916-5136 ; 0000-0001-5587-3544 ; 0000-0002-3089-0847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2433748020/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2433748020?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32784818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Zhu, Jingyi</creatorcontrib><creatorcontrib>Fan, Xia</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Tu, Kang</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><creatorcontrib>Wang, Jiahong</creatorcontrib><creatorcontrib>Pan, Leiqing</creatorcontrib><title>Rapid Non-Destructive Quantification of Eugenol in Curdlan Biofilms by Electronic Nose Combined with Gas Chromatography-Mass Spectrometry</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Eugenol is hepatotoxic and potentially hazardous to human health. This paper reports on a rapid non-destructive quantitative method for the determination of eugenol concentration in curdlan (CD) biofilms by electronic nose (E-nose) combined with gas chromatography-mass spectrometry (GC-MS). Different concentrations of eugenol were added to the film-forming solution to form a series of biofilms by casting method, and the actual eugenol concentration in the biofilm was determined. Analysis of the odor collected on the biofilms was carried out by GC-MS and an E-nose. The E-nose data was subjected to principal component analysis (PCA) and linear discriminant analysis (LDA) in order to establish a discriminant model for determining eugenol concentrations in the biofilms. Further analyses involving the application of all sensors and featured sensors, the prediction model-based partial least squares (PLS) and support vector machines (SVM) were carried out to determine eugenol concentration in the CD biofilms. The results showed that the optimal prediction model for eugenol concentration was obtained by PLS at R
of 0.952 using 10 sensors. The study described a rapid, non-destructive detection and quantitative method for determining eugenol concentration in bio-based packaging materials.</description><subject>beta-Glucans</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Chromatography</subject><subject>curdlan</subject><subject>Discriminant analysis</subject><subject>Electronic Nose</subject><subject>Electronic noses</subject><subject>Eugenol</subject><subject>Food</subject><subject>Gas chromatography</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>GC-MS</subject><subject>Glycerol</subject><subject>Humans</subject><subject>Mass spectrometry</subject><subject>Methods</subject><subject>Nondestructive testing</subject><subject>Odorants - analysis</subject><subject>prediction model</subject><subject>Prediction models</subject><subject>Principal components analysis</subject><subject>Quantitative analysis</subject><subject>Scientific imaging</subject><subject>Sensors</subject><subject>Spectroscopy</subject><subject>Support vector machines</subject><subject>Volatility</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVks1u1DAQxyNERUvhwAsgS5w4BPyV2L4gQVhKpbaIr7PlOJNdrxI7tZ2ifQTemtBtV-1pRjP_-c2MZoriFcHvGFP4faKY1Jxz8qQ4IZzyUlKKnz7wj4vnKW0xpowx-aw4ZlRILok8Kf7-MJPr0FXw5WdIOc42uxtA32fjs-udNdkFj0KPVvMafBiQ86iZYzcYjz650LthTKjdodUANsfgnV1YCVATxtZ56NAflzfozCTUbGIYTQ7raKbNrrw0KaGf023VCDnuXhRHvRkSvLyzp8XvL6tfzdfy4tvZefPxorS8VrkEwTjFFtrK4LqntK0FlaQCrDivBAMLglZ9T4gSVlJVMUmspao1UKslaNlpcb7ndsFs9RTdaOJOB-P0bSDEtTYxOzuAZlVta9kzYTjmCoMxVkqgCjjvCNB6YX3Ys6a5HaGz4HM0wyPo44x3G70ON1pwQZlSC-DNHSCG63k5gN6GOfplf005Y4JLTPGiertX2RhSitAfOhCs_3-APnzAon39cKSD8v7k7B8H16zm</recordid><startdate>20200809</startdate><enddate>20200809</enddate><creator>Han, Lu</creator><creator>Zhu, Jingyi</creator><creator>Fan, Xia</creator><creator>Zhang, Chong</creator><creator>Tu, Kang</creator><creator>Peng, Jing</creator><creator>Wang, Jiahong</creator><creator>Pan, Leiqing</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7916-5136</orcidid><orcidid>https://orcid.org/0000-0001-5587-3544</orcidid><orcidid>https://orcid.org/0000-0002-3089-0847</orcidid></search><sort><creationdate>20200809</creationdate><title>Rapid Non-Destructive Quantification of Eugenol in Curdlan Biofilms by Electronic Nose Combined with Gas Chromatography-Mass Spectrometry</title><author>Han, Lu ; Zhu, Jingyi ; Fan, Xia ; Zhang, Chong ; Tu, Kang ; Peng, Jing ; Wang, Jiahong ; Pan, Leiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>beta-Glucans</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Chromatography</topic><topic>curdlan</topic><topic>Discriminant analysis</topic><topic>Electronic Nose</topic><topic>Electronic noses</topic><topic>Eugenol</topic><topic>Food</topic><topic>Gas chromatography</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>GC-MS</topic><topic>Glycerol</topic><topic>Humans</topic><topic>Mass spectrometry</topic><topic>Methods</topic><topic>Nondestructive testing</topic><topic>Odorants - analysis</topic><topic>prediction model</topic><topic>Prediction models</topic><topic>Principal components analysis</topic><topic>Quantitative analysis</topic><topic>Scientific imaging</topic><topic>Sensors</topic><topic>Spectroscopy</topic><topic>Support vector machines</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Zhu, Jingyi</creatorcontrib><creatorcontrib>Fan, Xia</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Tu, Kang</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><creatorcontrib>Wang, Jiahong</creatorcontrib><creatorcontrib>Pan, Leiqing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Lu</au><au>Zhu, Jingyi</au><au>Fan, Xia</au><au>Zhang, Chong</au><au>Tu, Kang</au><au>Peng, Jing</au><au>Wang, Jiahong</au><au>Pan, Leiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Non-Destructive Quantification of Eugenol in Curdlan Biofilms by Electronic Nose Combined with Gas Chromatography-Mass Spectrometry</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-08-09</date><risdate>2020</risdate><volume>20</volume><issue>16</issue><spage>4441</spage><pages>4441-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Eugenol is hepatotoxic and potentially hazardous to human health. This paper reports on a rapid non-destructive quantitative method for the determination of eugenol concentration in curdlan (CD) biofilms by electronic nose (E-nose) combined with gas chromatography-mass spectrometry (GC-MS). Different concentrations of eugenol were added to the film-forming solution to form a series of biofilms by casting method, and the actual eugenol concentration in the biofilm was determined. Analysis of the odor collected on the biofilms was carried out by GC-MS and an E-nose. The E-nose data was subjected to principal component analysis (PCA) and linear discriminant analysis (LDA) in order to establish a discriminant model for determining eugenol concentrations in the biofilms. Further analyses involving the application of all sensors and featured sensors, the prediction model-based partial least squares (PLS) and support vector machines (SVM) were carried out to determine eugenol concentration in the CD biofilms. The results showed that the optimal prediction model for eugenol concentration was obtained by PLS at R
of 0.952 using 10 sensors. The study described a rapid, non-destructive detection and quantitative method for determining eugenol concentration in bio-based packaging materials.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32784818</pmid><doi>10.3390/s20164441</doi><orcidid>https://orcid.org/0000-0002-7916-5136</orcidid><orcidid>https://orcid.org/0000-0001-5587-3544</orcidid><orcidid>https://orcid.org/0000-0002-3089-0847</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-08, Vol.20 (16), p.4441 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_356c68f37a40490eaac88e29e44d1e26 |
source | PubMed Central Free; ProQuest Publicly Available Content database |
subjects | beta-Glucans biofilm Biofilms Chromatography curdlan Discriminant analysis Electronic Nose Electronic noses Eugenol Food Gas chromatography Gas Chromatography-Mass Spectrometry GC-MS Glycerol Humans Mass spectrometry Methods Nondestructive testing Odorants - analysis prediction model Prediction models Principal components analysis Quantitative analysis Scientific imaging Sensors Spectroscopy Support vector machines Volatility |
title | Rapid Non-Destructive Quantification of Eugenol in Curdlan Biofilms by Electronic Nose Combined with Gas Chromatography-Mass Spectrometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Non-Destructive%20Quantification%20of%20Eugenol%20in%20Curdlan%20Biofilms%20by%20Electronic%20Nose%20Combined%20with%20Gas%20Chromatography-Mass%20Spectrometry&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Han,%20Lu&rft.date=2020-08-09&rft.volume=20&rft.issue=16&rft.spage=4441&rft.pages=4441-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20164441&rft_dat=%3Cproquest_doaj_%3E2433748020%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2433748020&rft_id=info:pmid/32784818&rfr_iscdi=true |