Loading…

Rapid Non-Destructive Quantification of Eugenol in Curdlan Biofilms by Electronic Nose Combined with Gas Chromatography-Mass Spectrometry

Eugenol is hepatotoxic and potentially hazardous to human health. This paper reports on a rapid non-destructive quantitative method for the determination of eugenol concentration in curdlan (CD) biofilms by electronic nose (E-nose) combined with gas chromatography-mass spectrometry (GC-MS). Differen...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-08, Vol.20 (16), p.4441
Main Authors: Han, Lu, Zhu, Jingyi, Fan, Xia, Zhang, Chong, Tu, Kang, Peng, Jing, Wang, Jiahong, Pan, Leiqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3
cites cdi_FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3
container_end_page
container_issue 16
container_start_page 4441
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Han, Lu
Zhu, Jingyi
Fan, Xia
Zhang, Chong
Tu, Kang
Peng, Jing
Wang, Jiahong
Pan, Leiqing
description Eugenol is hepatotoxic and potentially hazardous to human health. This paper reports on a rapid non-destructive quantitative method for the determination of eugenol concentration in curdlan (CD) biofilms by electronic nose (E-nose) combined with gas chromatography-mass spectrometry (GC-MS). Different concentrations of eugenol were added to the film-forming solution to form a series of biofilms by casting method, and the actual eugenol concentration in the biofilm was determined. Analysis of the odor collected on the biofilms was carried out by GC-MS and an E-nose. The E-nose data was subjected to principal component analysis (PCA) and linear discriminant analysis (LDA) in order to establish a discriminant model for determining eugenol concentrations in the biofilms. Further analyses involving the application of all sensors and featured sensors, the prediction model-based partial least squares (PLS) and support vector machines (SVM) were carried out to determine eugenol concentration in the CD biofilms. The results showed that the optimal prediction model for eugenol concentration was obtained by PLS at R of 0.952 using 10 sensors. The study described a rapid, non-destructive detection and quantitative method for determining eugenol concentration in bio-based packaging materials.
doi_str_mv 10.3390/s20164441
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_356c68f37a40490eaac88e29e44d1e26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_356c68f37a40490eaac88e29e44d1e26</doaj_id><sourcerecordid>2433748020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3</originalsourceid><addsrcrecordid>eNpVks1u1DAQxyNERUvhwAsgS5w4BPyV2L4gQVhKpbaIr7PlOJNdrxI7tZ2ifQTemtBtV-1pRjP_-c2MZoriFcHvGFP4faKY1Jxz8qQ4IZzyUlKKnz7wj4vnKW0xpowx-aw4ZlRILok8Kf7-MJPr0FXw5WdIOc42uxtA32fjs-udNdkFj0KPVvMafBiQ86iZYzcYjz650LthTKjdodUANsfgnV1YCVATxtZ56NAflzfozCTUbGIYTQ7raKbNrrw0KaGf023VCDnuXhRHvRkSvLyzp8XvL6tfzdfy4tvZefPxorS8VrkEwTjFFtrK4LqntK0FlaQCrDivBAMLglZ9T4gSVlJVMUmspao1UKslaNlpcb7ndsFs9RTdaOJOB-P0bSDEtTYxOzuAZlVta9kzYTjmCoMxVkqgCjjvCNB6YX3Ys6a5HaGz4HM0wyPo44x3G70ON1pwQZlSC-DNHSCG63k5gN6GOfplf005Y4JLTPGiertX2RhSitAfOhCs_3-APnzAon39cKSD8v7k7B8H16zm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433748020</pqid></control><display><type>article</type><title>Rapid Non-Destructive Quantification of Eugenol in Curdlan Biofilms by Electronic Nose Combined with Gas Chromatography-Mass Spectrometry</title><source>PubMed Central Free</source><source>ProQuest Publicly Available Content database</source><creator>Han, Lu ; Zhu, Jingyi ; Fan, Xia ; Zhang, Chong ; Tu, Kang ; Peng, Jing ; Wang, Jiahong ; Pan, Leiqing</creator><creatorcontrib>Han, Lu ; Zhu, Jingyi ; Fan, Xia ; Zhang, Chong ; Tu, Kang ; Peng, Jing ; Wang, Jiahong ; Pan, Leiqing</creatorcontrib><description>Eugenol is hepatotoxic and potentially hazardous to human health. This paper reports on a rapid non-destructive quantitative method for the determination of eugenol concentration in curdlan (CD) biofilms by electronic nose (E-nose) combined with gas chromatography-mass spectrometry (GC-MS). Different concentrations of eugenol were added to the film-forming solution to form a series of biofilms by casting method, and the actual eugenol concentration in the biofilm was determined. Analysis of the odor collected on the biofilms was carried out by GC-MS and an E-nose. The E-nose data was subjected to principal component analysis (PCA) and linear discriminant analysis (LDA) in order to establish a discriminant model for determining eugenol concentrations in the biofilms. Further analyses involving the application of all sensors and featured sensors, the prediction model-based partial least squares (PLS) and support vector machines (SVM) were carried out to determine eugenol concentration in the CD biofilms. The results showed that the optimal prediction model for eugenol concentration was obtained by PLS at R of 0.952 using 10 sensors. The study described a rapid, non-destructive detection and quantitative method for determining eugenol concentration in bio-based packaging materials.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20164441</identifier><identifier>PMID: 32784818</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>beta-Glucans ; biofilm ; Biofilms ; Chromatography ; curdlan ; Discriminant analysis ; Electronic Nose ; Electronic noses ; Eugenol ; Food ; Gas chromatography ; Gas Chromatography-Mass Spectrometry ; GC-MS ; Glycerol ; Humans ; Mass spectrometry ; Methods ; Nondestructive testing ; Odorants - analysis ; prediction model ; Prediction models ; Principal components analysis ; Quantitative analysis ; Scientific imaging ; Sensors ; Spectroscopy ; Support vector machines ; Volatility</subject><ispartof>Sensors (Basel, Switzerland), 2020-08, Vol.20 (16), p.4441</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3</citedby><cites>FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3</cites><orcidid>0000-0002-7916-5136 ; 0000-0001-5587-3544 ; 0000-0002-3089-0847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2433748020/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2433748020?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32784818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Zhu, Jingyi</creatorcontrib><creatorcontrib>Fan, Xia</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Tu, Kang</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><creatorcontrib>Wang, Jiahong</creatorcontrib><creatorcontrib>Pan, Leiqing</creatorcontrib><title>Rapid Non-Destructive Quantification of Eugenol in Curdlan Biofilms by Electronic Nose Combined with Gas Chromatography-Mass Spectrometry</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Eugenol is hepatotoxic and potentially hazardous to human health. This paper reports on a rapid non-destructive quantitative method for the determination of eugenol concentration in curdlan (CD) biofilms by electronic nose (E-nose) combined with gas chromatography-mass spectrometry (GC-MS). Different concentrations of eugenol were added to the film-forming solution to form a series of biofilms by casting method, and the actual eugenol concentration in the biofilm was determined. Analysis of the odor collected on the biofilms was carried out by GC-MS and an E-nose. The E-nose data was subjected to principal component analysis (PCA) and linear discriminant analysis (LDA) in order to establish a discriminant model for determining eugenol concentrations in the biofilms. Further analyses involving the application of all sensors and featured sensors, the prediction model-based partial least squares (PLS) and support vector machines (SVM) were carried out to determine eugenol concentration in the CD biofilms. The results showed that the optimal prediction model for eugenol concentration was obtained by PLS at R of 0.952 using 10 sensors. The study described a rapid, non-destructive detection and quantitative method for determining eugenol concentration in bio-based packaging materials.</description><subject>beta-Glucans</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Chromatography</subject><subject>curdlan</subject><subject>Discriminant analysis</subject><subject>Electronic Nose</subject><subject>Electronic noses</subject><subject>Eugenol</subject><subject>Food</subject><subject>Gas chromatography</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>GC-MS</subject><subject>Glycerol</subject><subject>Humans</subject><subject>Mass spectrometry</subject><subject>Methods</subject><subject>Nondestructive testing</subject><subject>Odorants - analysis</subject><subject>prediction model</subject><subject>Prediction models</subject><subject>Principal components analysis</subject><subject>Quantitative analysis</subject><subject>Scientific imaging</subject><subject>Sensors</subject><subject>Spectroscopy</subject><subject>Support vector machines</subject><subject>Volatility</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVks1u1DAQxyNERUvhwAsgS5w4BPyV2L4gQVhKpbaIr7PlOJNdrxI7tZ2ifQTemtBtV-1pRjP_-c2MZoriFcHvGFP4faKY1Jxz8qQ4IZzyUlKKnz7wj4vnKW0xpowx-aw4ZlRILok8Kf7-MJPr0FXw5WdIOc42uxtA32fjs-udNdkFj0KPVvMafBiQ86iZYzcYjz650LthTKjdodUANsfgnV1YCVATxtZ56NAflzfozCTUbGIYTQ7raKbNrrw0KaGf023VCDnuXhRHvRkSvLyzp8XvL6tfzdfy4tvZefPxorS8VrkEwTjFFtrK4LqntK0FlaQCrDivBAMLglZ9T4gSVlJVMUmspao1UKslaNlpcb7ndsFs9RTdaOJOB-P0bSDEtTYxOzuAZlVta9kzYTjmCoMxVkqgCjjvCNB6YX3Ys6a5HaGz4HM0wyPo44x3G70ON1pwQZlSC-DNHSCG63k5gN6GOfplf005Y4JLTPGiertX2RhSitAfOhCs_3-APnzAon39cKSD8v7k7B8H16zm</recordid><startdate>20200809</startdate><enddate>20200809</enddate><creator>Han, Lu</creator><creator>Zhu, Jingyi</creator><creator>Fan, Xia</creator><creator>Zhang, Chong</creator><creator>Tu, Kang</creator><creator>Peng, Jing</creator><creator>Wang, Jiahong</creator><creator>Pan, Leiqing</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7916-5136</orcidid><orcidid>https://orcid.org/0000-0001-5587-3544</orcidid><orcidid>https://orcid.org/0000-0002-3089-0847</orcidid></search><sort><creationdate>20200809</creationdate><title>Rapid Non-Destructive Quantification of Eugenol in Curdlan Biofilms by Electronic Nose Combined with Gas Chromatography-Mass Spectrometry</title><author>Han, Lu ; Zhu, Jingyi ; Fan, Xia ; Zhang, Chong ; Tu, Kang ; Peng, Jing ; Wang, Jiahong ; Pan, Leiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>beta-Glucans</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Chromatography</topic><topic>curdlan</topic><topic>Discriminant analysis</topic><topic>Electronic Nose</topic><topic>Electronic noses</topic><topic>Eugenol</topic><topic>Food</topic><topic>Gas chromatography</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>GC-MS</topic><topic>Glycerol</topic><topic>Humans</topic><topic>Mass spectrometry</topic><topic>Methods</topic><topic>Nondestructive testing</topic><topic>Odorants - analysis</topic><topic>prediction model</topic><topic>Prediction models</topic><topic>Principal components analysis</topic><topic>Quantitative analysis</topic><topic>Scientific imaging</topic><topic>Sensors</topic><topic>Spectroscopy</topic><topic>Support vector machines</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Lu</creatorcontrib><creatorcontrib>Zhu, Jingyi</creatorcontrib><creatorcontrib>Fan, Xia</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Tu, Kang</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><creatorcontrib>Wang, Jiahong</creatorcontrib><creatorcontrib>Pan, Leiqing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Lu</au><au>Zhu, Jingyi</au><au>Fan, Xia</au><au>Zhang, Chong</au><au>Tu, Kang</au><au>Peng, Jing</au><au>Wang, Jiahong</au><au>Pan, Leiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Non-Destructive Quantification of Eugenol in Curdlan Biofilms by Electronic Nose Combined with Gas Chromatography-Mass Spectrometry</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-08-09</date><risdate>2020</risdate><volume>20</volume><issue>16</issue><spage>4441</spage><pages>4441-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Eugenol is hepatotoxic and potentially hazardous to human health. This paper reports on a rapid non-destructive quantitative method for the determination of eugenol concentration in curdlan (CD) biofilms by electronic nose (E-nose) combined with gas chromatography-mass spectrometry (GC-MS). Different concentrations of eugenol were added to the film-forming solution to form a series of biofilms by casting method, and the actual eugenol concentration in the biofilm was determined. Analysis of the odor collected on the biofilms was carried out by GC-MS and an E-nose. The E-nose data was subjected to principal component analysis (PCA) and linear discriminant analysis (LDA) in order to establish a discriminant model for determining eugenol concentrations in the biofilms. Further analyses involving the application of all sensors and featured sensors, the prediction model-based partial least squares (PLS) and support vector machines (SVM) were carried out to determine eugenol concentration in the CD biofilms. The results showed that the optimal prediction model for eugenol concentration was obtained by PLS at R of 0.952 using 10 sensors. The study described a rapid, non-destructive detection and quantitative method for determining eugenol concentration in bio-based packaging materials.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32784818</pmid><doi>10.3390/s20164441</doi><orcidid>https://orcid.org/0000-0002-7916-5136</orcidid><orcidid>https://orcid.org/0000-0001-5587-3544</orcidid><orcidid>https://orcid.org/0000-0002-3089-0847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-08, Vol.20 (16), p.4441
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_356c68f37a40490eaac88e29e44d1e26
source PubMed Central Free; ProQuest Publicly Available Content database
subjects beta-Glucans
biofilm
Biofilms
Chromatography
curdlan
Discriminant analysis
Electronic Nose
Electronic noses
Eugenol
Food
Gas chromatography
Gas Chromatography-Mass Spectrometry
GC-MS
Glycerol
Humans
Mass spectrometry
Methods
Nondestructive testing
Odorants - analysis
prediction model
Prediction models
Principal components analysis
Quantitative analysis
Scientific imaging
Sensors
Spectroscopy
Support vector machines
Volatility
title Rapid Non-Destructive Quantification of Eugenol in Curdlan Biofilms by Electronic Nose Combined with Gas Chromatography-Mass Spectrometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Non-Destructive%20Quantification%20of%20Eugenol%20in%20Curdlan%20Biofilms%20by%20Electronic%20Nose%20Combined%20with%20Gas%20Chromatography-Mass%20Spectrometry&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Han,%20Lu&rft.date=2020-08-09&rft.volume=20&rft.issue=16&rft.spage=4441&rft.pages=4441-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20164441&rft_dat=%3Cproquest_doaj_%3E2433748020%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-e73420ceb5a06f22b672815e0944573ece725ff1197c8295381cc29bae69119c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2433748020&rft_id=info:pmid/32784818&rfr_iscdi=true